

MASS-STREAM[™] BEDIENUNGSANLEITUNG

D-6400 Digitale Massendurchflussmesser/-regler

Dok.- Nr.: 9.19.119D Datum: 2025-01

ACHTUNG

Es wird empfohlen, diese Bedienungsanleitung vor Einbau und Inbetriebnahme des Produkts sorgfältig zu lesen. Die Nichtbeachtung der Anleitung kann Personenschäden und/oder Schäden am Gerät zur Folge haben.

Copyright

© 2024 Bronkhorst Instruments GmbH - Alle Rechte vorbehalten Bronkhorst[®] ist ein eingetragenes Warenzeichen von Bronkhorst High-Tech B.V. Alle anderen Marken sind Eigentum ihrer jeweiligen Inhaber.

Haftungsausschluss

Die Abbildungen in diesem Dokument dienen dazu, allgemeine Hinweise zur korrekten Bedienung zu geben. Die Abbildungen sind vereinfachte Darstellungen der tatsächlichen Situation und können von dem tatsächlichen Produkt abweichen.

Die Bronkhorst Instruments GmbH behält sich das Recht vor, ihre Produkte und Dokumentationen ohne Benachrichtigung zu ändern oder zu verbessern. Prüfen Sie vor der Arbeit, ob eine neuere Version dieses Dokuments auf der Bronkhorst Website verfügbar ist.

Symbole in diesem Dokument

Wichtige Informationen. Bei Nichtbeachtung dieser Informationen besteht erhöhte Gefahr für Schäden am Gerät oder Personenschäden.

Hilfreiche Informationen. Diese Informationen erleichtern die Verwendung des Geräts und/oder tragen zur optimalen Leistung bei.

Weitere Informationen erhalten Sie im Internet oder von Ihrem Bronkhorst-Vertreter.

Erhalt des Geräts

Prüfen Sie die Außenverpackung auf Transportschäden. Ist die Verpackung beschädigt, muss das Transportunternehmen umgehend benachrichtigt werden, um Haftungsansprüche geltend zu machen. Darüber hinaus sollten Sie etwaige Schäden Ihrem Bronkhorst-Vertreter melden.

Entnehmen Sie das Gerät vorsichtig aus der Verpackung. Vergewissern Sie sich, dass der Inhalt der Verpackung beim Transport nicht beschädigt wurde. Ist das Gerät beschädigt, muss das Transportunternehmen umgehend benachrichtigt werden, um Haftungsansprüche geltend zu machen. Darüber hinaus sollten Sie etwaige Schäden Ihrem Bronkhorst-Vertreter melden.

- Überprüfen Sie den Packzettel, um sich zu vergewissern, dass Sie alle Artikel erhalten haben, die im Lieferumfang aufgeführt sind.
- Achten Sie darauf, dass Ersatz- oder Austauschteile nicht zusammen mit den Verpackungsmaterialien entsorgt werden.

Informationen zum Rücksendeverfahren finden Sie im Abschnitt über Ausbau- und Rückgabeanweisungen.

Lagerung des Geräts

- Das Gerät sollte in seiner Originalverpackung an einem klimatisierten Ort gelagert werden.
- Es darf keinesfalls extremen Temperaturen oder Feuchtigkeit ausgesetzt werden.
- Informationen zu den vorgeschriebenen Lagerbedingungen finden Sie in den technischen Spezifikationen.

Gewährleistung

Informationen zur Gewährleistung und zu den Verkaufsbedingungen finden Sie auf der Bronkhorst-Website: <u>https://www.bronkhorst.com/de-de/bronkhorst-instruments/</u>

Allgemeine Sicherheitsvorkehrungen

Das Produkt ist für den Gebrauch durch qualifiziertes Personal bestimmt, das eine mögliche Gefahr von Stromschlägen erkennt und das mit den erforderlichen Sicherheitsvorkehrungen zur Vermeidung von möglichen Verletzungen vertraut ist. Lesen Sie die Betriebsinformationen sorgfältig durch, bevor Sie das Produkt verwenden.

Stellen Sie vor der Inbetriebnahme sicher, dass das Netzkabel ordnungsgemäß an eine geerdete Steckdose angeschlossen ist. Prüfen Sie die angeschlossenen Leitungen vor jedem Gebrauch auf Risse oder Brüche.

Gerät und Zubehör müssen entsprechend der Spezifikationen und der Betriebsanweisungen verwendet werden, da andernfalls die Betriebssicherheit des Geräts gefährdet ist.

Es ist nicht gestattet, das Gerät zu öffnen. Im Inneren befinden sich keine vom Anwender zu wartenden Teile. Bei einem Defekt senden Sie das Gerät bitte an Bronkhorst Instruments GmbH zurück.

Um den Schutz vor Stromschlag und Brand zu gewährleisten, dürfen ausschließlich Ersatzteile von Bronkhorst verwendet werden. Standardsicherungen mit den geltenden nationalen Zulassungen können verwendet werden, wenn Nennwert und Typ übereinstimmen. Andere, nicht sicherheitsrelevante Bauteile können von anderen Lieferanten bezogen werden, sofern sie den Originalbauteilen entsprechen. Bestimmte Teile sollten ausschließlich von Bronkhorst bezogen werden, um die Genauigkeit und Funktionalität des Produkts zu gewährleisten. Wenn Sie sich über die Bedeutung eines Ersatzteils unsicher sind, wenden Sie sich für weitere Informationen an Ihren Bronkhorst-Vertreter.

Inhalt

1.	Einleitung6
1.1.	Geltungsbereich dieser Anleitung6
1.2.	Verwendungszweck
1.3.	Produktbeschreibung7
1.4.	Kalibrierung7
1.5.	Umrechnung (Konversion) mit der FLUIDAT on board Gasdatenbank
1.6.	Wartung8
1.7.	Dokumentation9
1.8.	Modellschlüssel10
1.9.	Kompatibilität mit Dichtwerkstoffen11
2.	Montage13
2.1.	Allgemeines
2.2.	Funktionsmerkmale
2.3.	Betriebsbedingungen
2.4.	Montage13
2.5.	Anforderungen an Leitungen14
2.6.	Medienanschluss
2.7.	Elektrischer Anschluss15
2.8.	Feldbus-Anschluss
2.9.	Kommunikationsschnittstelle16
3.	Betrieb18
3.1.	Hoch- und Herunterfahren18
3.2.	Erste Verwendung18
3.3.	Massendurchflussmessung und -regelung18
3.4.	Valve Safe State
3.5.	Manuelle Regelung
3.6.	Kommunikation
3.7.	Nullpunkt justieren

4.	Digitale Parameter31
4.1.	Allgemeines
4.2.	Spezielle Parameter
4.3.	Messen und Regeln
4.4.	Geräteidentifikation
4.5.	Alarmmeldungen
4.6.	Zähler
4.7.	Netzwerkkonfiguration41
4.8.	Medieneinstellung43
4.9.	Master/Slave-Konfiguration (FLOW-BUS)45
4.10.	Individuelle I/O-Optionen (Pin 5)
5.	Problembehandlung48
5.1.	Fehler und Warnungen
5.2.	Wiederherstellen der Werkseinstellungen 48
5.3.	Häufige Probleme
6.	Kontakt- und Service-Informationen51
6.1.	Rücksendungen
6.2.	Entsorgung (Ende der Lebensdauer)51

1. Einleitung

1.1. Geltungsbereich dieser Anleitung

Diese Anleitung gilt für die Massendurchflussmesser/-regler für Gase der Modellserie **MASS-STREAM D-6400** von Bronkhorst[®]. Sie enthält allgemeine Produktinformationen, Installations- und Betriebsanweisungen sowie Hinweise zur Fehlerbehebung.

1.2. Verwendungszweck

Die **MASS-STREAM D-6400 Modellserie** wurde für die Messung und/oder Regelung von Gasdurchflussmengen in einem Mediensystem mit den bei der Bestellung angegebenen Medien und Betriebsbedingungen (z.B. Temperatur und Druck) entwickelt.

Das oder die Gase im Drucksystem, in dem das Gerät installiert wird, sollten nach Möglichkeit sauber und trocken sein. Das Gerät ist für allgemeine Anwendungen in (trockenen) Innenbereichen wie etwa Laboren und Maschinengehäusen sowie für Anwendungen in geschützten Außenbereichen wie Installationen in Anlagengebäuden geeignet. Das kompakte und robuste Design der MASS-STREAM D-6400 Modellserie ist kaum anfällig für Kontaminierungen oder Feuchtigkeit im Gasdurchfluss und ermöglicht die Installation unter rauen Umgebungsbedingungen.

MASS-STREAM D-6400 Geräte sind für die Verwendung bei einer Umgebungstemperatur von 0 bis +50 °C und einer relativen Feuchtigkeit von 10 bis 90 % RH geeignet, sofern nichts anderes angegeben ist. Die Geräte entsprechen der Schutzart IP65, sodass das Elektronikgehäuse und der Stromanschluss einen gewissen Schutz gegen feuchte und staubige Umgebungsbedingungen bieten.

Die im **MASS-STREAM D-6400** verbauten medienberührten Materialien sind mit den bei der Bestellung angegebenen Medien und Bedingungen (zum Beispiel Druck und Temperatur) kompatibel. Wenn Sie beabsichtigen, das Produkt (oder etwaige vo n Bronkhorst gelieferte Komponenten von Drittherstellern) mit anderen Medien und/oder unter anderen Bedingungen zu verwenden, prüfen Sie stets vorher, ob die medienberührten Materialien (einschließlich der Dichtungen) damit kompatibel sind. Angaben zu den verbauten Materialien finden Sie in den technischen Spezifikationen des Produkts und ggf. der Produktdokumentation des Drittherstellers.

Verantwortlich für die Eignung, die vorgesehene Verwendung, die Reinigung und die Korrosionsfestigkeit der verwendeten Materialien in Kombination mit den Medien liegt allein beim Endbenutzer.

Gegebenenfalls werden in diesem Dokument Sicherheitsmaßnahmen empfohlen oder vorgeschrieben, die im Zusammenhang mit der Verwendung von Medien oder Nutzung des beschriebenen Geräts unter spezifischen Bedingungen zu ergreifen sind. Der Endbenutzer ist dafür verantwortlich, die nötigen Sicherheitsvorkehrungen zu treffen und geeignete (persönliche) Schutzausrüstung korrekt zu verwenden, auch wenn das in diesem Dokument nicht ausdrücklich empfohlen oder vorgeschrieben wird.

Der Endbenutzer muss mit den notwendigen Sicherheitsvorkehrungen vertraut sein und die im Sicherheitsdatenblatt der zu verwendenden Medien beschriebenen Schutzmaßnahmen ergreifen (falls zutreffend).

Bronkhorst Instruments GmbH übernimmt keinerlei Haftung für Schäden, die auf einen unsachgemäßen oder nicht sicheren Gebrauch sowie die Verwendung mit anderen Medien und/oder unter anderen Bedingungen als in der Bestellung angegeben zurückzuführen sind.

Siehe dazu auch Dichtstoffkompatibilität.

1.3. Produktbeschreibung

MASS-STREAM D-6400 Geräte sind Messgeräte für thermische Massendurchflüsse und die Regelung von Gasen. Sie sind mit einer digitalen, elektronischen Multibus-Platine ausgestattet und bestehen aus einem Mikrocontroller mit einer Peripherieschaltung für Messung, Regelung und Kommunikation. Das Durchflusssignal wird direkt im Gasdurchfluss gemessen und digitalisiert und von der internen Software (Firmware) verarbeitet. Die gemessenen und verarbeiteten Werte können über die analoge Schnittstelle und durch digitale RS232-Kommunikation ausgegeben werden. Die Einstellung der Stellglieder von Reglern wird durch die Firmware berechnet. Sollwerte lassen sich über die analoge Schnittstelle oder digitale Kommunikation einstellen.

Diese digitalen Geräte bieten eine hohe Flexibilität, die durch das Multibus-Konzept gewährleistet wird, bei dem die Geräte mit einer Schnittstelle mit DeviceNet[™], PROFIBUS DP, PROFINET, Modbus, EtherCAT[®], FLOW-BUS oder EtherNet-basierten Protokollen ausgestattet werden können.

Zahlreiche Eingangs-/Ausgangsoptionen können über den programmierbaren 8DIN-Stecker installiert werden (siehe Individuelle I/O Optionen). Zusätzlich zu den verschiedenen analogen Signaloptionen und der standardmäßigen RS232-Kommunikation stehen Optionen wie RS485-Kommunikation, digitaler Frequenz-/Impulsausgang, Alarmausgang/-reset, Spülen/Schließen eines Ventils und analoger Ventilausgang zur Verfügung.

Die **MASS-STREAM D-6400** Geräte verfügen dank der Multi-Gas/Multi-Range-Funktion über eine hohe Flexibilität. Der Zugriff auf diese Funktion kann einfach über die <u>Bronkhorst Software-Tools</u> oder die SPS erfolgen; eine Trennung des Geräts von Ihrem System ist nicht erforderlich. Für weitere Gasarten kann der Benutzer genaue Medieneigenschaften für die Umwandlung mit Hilfe unserer kostenlosen Online-Software FLUIDAT[®] on the Net berechnen. Benutzer von **MASS-STREAM D-6400** Geräten können diese vor Ort neu skalieren, und so Zeit und Geld für Demontage und Neukalibrierung sparen.

Auch die Mikroschalter und LEDs am Gerät können beim manuellen Betrieb einiger Optionen hilfreich sein.

1.4. Kalibrierung

Die **MASS-STREAM D-6400** sind werksseitig kalibriert. Regelmäßige Inspektion, Neukalibrierung oder Überprüfung der Genauigkeit können abhängig von den individuellen Anforderungen des Endbenutzers durchgeführt werden.

Bronkhorst gewährleistet die Nenngenauigkeit des Geräts. Die Kalibrierung wurde gemäß den Messnormen des Nationalen Metrologieinstituts der Niederlande (VSL) durchgeführt.

1.5. Umrechnung (Konversion) mit der FLUIDAT on board Gasdatenbank

Die MASS-STREAM D-6400 Massendurchflussmesser und -regler sind standardmäßig ab Werk mit Luft kalibriert. Falls andere Gase oder Gasgemische verwendet werden, wird eine Durchflussumrechnung durchgeführt. Die Umrechnung ist abhängig von den physikalischen Eigenschaften des Gases und den Prozessparametern, wie z.B. der Medientemperatur und dem Betriebsdruck. Die integrierte FLUIDAT Gasdatenbank gewährleistet eine erstklassige Umwandlung von Luft in das Kundengas.

Obwohl die Gaseigenschaften und das Umwandlungsmodell sehr genau sind, kann das Ergebnis etwas von den theoretisch berechneten Werten abweichen. Diese wird als Umrechnungsunsicherheit bezeichnet und existiert zusätzlich zur Kalibriergenauigkeit. Bei einem Umrechnungsfaktor (CF) >1 beträgt diese Umrechnungsunsicherheit ≤ 2 x CF (in % FS), und wenn der Umrechnungsfaktor (CF) <1 beträgt, beträgt diese Umrechnungsunsicherheit ≤ 2 / CF (in % FS).

Den Umrechnungsfaktor entnehmen Sie bitte <u>www.fluidat.com</u>.

1.6. Wartung

Eine regelmäßige Wartung ist nicht erforderlich, wenn die **MASS-STREAM D-6400** Geräte wie vorgeschrieben sowie mit sauberen und mit den medienberührten Materialien kompatiblen Medien verwendet und keinen Druck- oder Wärmeschocks oder Vibrationen ausgesetzt wird. Die Einheiten können mit einem sauberen, trockenen und inerten Gas gespült werden.

Bei einer schweren Kontaminierung kann es nötig sein, das Instrument von innen zu reinigen. Eine Neukalibrierung des Geräts nach der Reinigung wird empfohlen.

Die unsachgemäße Wartung von Geräte kann zu schweren Verletzungen und/oder Schäden an Gerät und Anlage führen. Aus diesem Grund darf die Wartung ausschließlich von geschultem und qualifiziertem Personal ausgeführt werden. Informationen über die Reinigung und Kalibrierung erhalten Sie von Ihrem Bronkhorst-Vertreter. Bronkhorst kann geschultes Personal zur Verfügung stellen.

1.7. Dokumentation

Die **MASS-STREAM D-6400** Geräte werden wird mit allen für Basisbetrieb und Wartung notwendigen Dokumenten ausgeliefert. Einige Teile dieses Handbuchs können sich auf andere Dokumente beziehen, die auf der Website von Bronkhorst zum Download bereitstehen. Kalibrierzertifikate, Testzertifikate und Materialzertifikate sind im Lieferumfang enthalten oder können auf Anfrage bereitgestellt werden.

Die in der folgenden Tabelle aufgelisteten Dokumente sind auf den Produktseiten des **MASS-STREAM D-6400** unter <u>www.bronkhorst.com/products</u> verfügbar.

Тур	Name des Dokuments	Dokumentennummer
Broschüre	MASS-STREAM D-6400 Broschüre	9.60.079
Anleitungen	Bedienungsanleitung MASS-STREAM D-6400 (dieses Dokument)	9.19.119
	Schnellstart Bedienungsanleitung MASS-STREAM D-6400	9.17.183
	MASS-STREAM D-6400 Bedienungsanleitung Display	9.17.164
Technische	Anschlussdiagramm Analog/RS232	9.16.267
Dokumentation	Anschlussdiagramm CANopen	9.16.272
	Anschlussdiagramm DeviceNet™	9.16.271
	Anschlussdiagramm EtherCAT®	9.16.273
	Anschlussdiagramm EtherNet/IP	9.16.273
	Anschlussdiagramm FLOW-BUS	9.16.268
	Anschlussdiagramm Modbus ASCII / RTU	9.16.269
	Anschlussdiagramm Modbus TCP	9.16.273
	Anschlussdiagramm POWERLINK	9.16.273
	Anschlussdiagramm PROFIBUS DP	9.16.270
	Anschlussdiagramm PROFINET	9.16.273
	Anschlussdiagramm Optionale Bus- & I/O-Konfigurationen	9.16.266
	Modellspezifische Maßzeichnungen	modellspezifisch

Тур	Name des Dokuments	Dokumentennummer
Allgemeine Dokumentation	EG-Konformitätserklärung	9.06.044
Anleitungen für Kommunikationsschnittstellen	Anleitung CANopen-Schnittstelle	9.17.131
Kommunikationsschnittstellen	Anleitung DeviceNet™-Schnittstelle	9.17.026
	Anleitung EtherCAT®-Schnittstelle	9.17.063
	Anleitung EtherNet/IP-Schnittstelle	9.17.132
	Anleitung FLOW-BUS-Schnittstelle	9.17.024
	Anleitung Modbus-Schnittstelle ASCII/RTU/TCP	9.17.035
	Anleitung POWERLINK-Schnittstelle	9.17.142
	Anleitung PROFIBUS DP-Schnittstelle	9.17.025
	Anleitung PROFINET-Schnittstelle	9.17.095
	Anleitung RS232-Schnittstelle	9.17.027

1.8. Modellschlüssel

Der Modellschlüssel auf dem Typenschild enthält Informationen über die technischen Eigenschaften des bestellten Geräts. Die spezifischen Eigenschaften können Sie den folgenden Abbildungen entnehmen.

Siehe Abschnitt <u>Individuelle I/O-Optionen (Pin 5)</u> für weitere Informationen über die konfigurierbaren Eingangs-/Ausgangsoptionen (Pin 5).

1.9. Kompatibilität mit Dichtwerkstoffen

MASS-STREAM D-6400 Geräte sind werksseitig mit internen Dichtungen ausgestattet, die mit dem oder den bei der Bestellung angegebenen Gastypen kompatibel sind. Überprüfen Sie vor der Verwendung anderer Medien grundsätzlich die Kompatibilität mit den verwendeten Dichtwerkstoffen. Überprüfen Sie den <u>Modellschlüssel</u> auf dem Typenschild, um zu ermitteln, welche Dichtwerkstoffe in Ihrem spezifischen Gerät verarbeitet wurden. Im Zweifelsfall können Sie sich für weitere Informationen jederzeit an Ihren Bronkhorst-Vertreter wenden.

In der folgenden Tabelle ist die Kompatibilität mit häufig verwendeten Gasen aufgeführt:

Name	Formel	Dichtwerkstoffe		
		FKM	EPDM	FFKM
Acetylen	C ₂ H ₂	V ¹	V	V
Ammoniak	NH ₃	х	V	V
Argon	Ar	V	V	V
n-Butan	C ₄ H ₁₀ #1	V	Х	V
α-Butylen	C ₄ H ₈ #2	V	Х	V
Chlor	Cl ₂	V	Х	V
Chlorwasserstoff	HCI	V	V	V
Cyclopropan	C ₃ H ₆ #1	V	Х	V
Dimethylether	C ₂ H ₆ O #1	Х	Х	V
Distickstoffmonoxid	N ₂ O	V	V	V
Ethan	C ₂ H ₆	V	Х	V
Ethen	C ₂ H ₄	max. 10 bar(g)	max. 10 bar(g)	max. 10 bar(g)
Helium	He	V	V	V
n-Hexan	C ₆ H ₁₄ #2	х	Х	V
Isopentan	C ₅ H ₁₂ #1	V	Х	V
Kohlenstoffdioxid	CO ₂	max. 10 bar(g), 50 °C	V	max. 10 bar(g), 50 °C
Kohlenstoffmonoxid	CO	V	V	V
Luft		V	V	V
Methan	CH ₄	V	Х	V
Methanthiol	CH ₄ S	х	Х	V
3-Methylpentan	C ₆ H ₁₄ #1	х	Х	V
2-Methylpropan	C ₄ H ₁₀ #2	V	Х	V
Monosilan	SiH ₄	V ¹	х	V
Neopentan	C ₅ H ₁₂ #2	х	Х	V
Ozon	O ₃	V	Х	V
Pentan	C ₅ H ₁₂ #3	V	Х	V
Pentanthiol	C ₅ H ₁₂ S #4	х	Х	V
Propan	C ₃ H ₈	V	Х	V
Propen	C ₃ H ₆ #2	max. 10 bar(g)	Х	V
Sauerstoff	O ₂	V	V	V
Schwefeldioxid	SO ₂	Х	V	V
Schwefelwasserstoff	H ₂ S	х	V	V

Name	Formel	Dichtwerkstoffe		
		FKM	EPDM	FFKM
Stickstoff	N ₂	V	V	V
Stickstoffmonoxid	NO	Х	Х	V
Wasserstoff	H ₂	V	V	V
Vinylethylen	C ₄ H ₆ #3	V	Х	V

1) Nur für Massendurchflussmesser

٠

- Prüfen Sie immer, ob die verwendeten Prozessgase oder Gemische mit den Dichtwerkstoffen
- kompatibel sind, die im Gerät verarbeitet sind. Die angegebenen Obergrenzen für Betriebsdruck und -temperatur dürfen auf keinen Fall überschritten werden. Die Verwendung des Geräts jenseits der angegebenen Betriebsgrenzen kann zu schweren Schäden und Gefahrensituationen führen. •

2. Montage

2.1. Allgemeines

Um Personenschäden und/oder Schäden am Gerät zu vermeiden, dürfen die Geräte ausschließlich von geschultem und qualifiziertem Personal installiert werden.

Die Geräte enthalten elektronische Komponenten, die anfällig für elektrostatische Entladungen (ESD) sind. Ein Kontakt mit elektronisch aufgeladenen Personen oder Objekten kann eine Gefahr für diese Bauteile darstellen oder sogar Fehlfunktionen verursachen.

2.2. Funktionsmerkmale

Überprüfen Sie vor dem Installieren des **MASS-STREAM D-6400** anhand der Angaben auf dem Typenschild, ob die Funktionsmerkmale Ihren Anforderungen entsprechen:

- Durchflussmenge
- Zu verwendende Medien
- Eingangs- und Ausgangsdruckwert(e)
- Ventiltyp (NC Normal geschlossen/NO Normal offen)

2.3. Betriebsbedingungen

Prüfdruck

Bronkhorst[®]-Geräte werden einer Druckprüfung bei mindestens dem 1,5-fachen des angegebenen Betriebsdrucks sowie einem Lecktest mit mindestens 2 * 10⁻⁸ mbar l/s Helium unterzogen.

sNW2420xxxA

D-6441-PGD-00-V-A-0-DA-000 20 In/min Air 5 bar (g) / 3 bar (g)

20°C N.C. Control Valve

- Der Prüfdruck ist auf einem roten Aufkleber auf dem Gerät angegeben; fehlt diese Angabe oder ist der Prüfdruck zu niedrig, darf das Gerät nicht verwendet werden und muss an den Hersteller zurückgegeben werden.
- Vergewissern Sie sich vor der Installation, dass der Nenndruck innerhalb der üblichen Prozessbedingungen liegt und dass der Prüfdruck dem Sicherheitsfaktor Ihrer Anwendung entspricht.
- Durch die Demontage des Geräts und/oder den Austausch von Teilen werden der Prüfdruck und der Wert des Lecktests ungültig.

Umgebungsbedingungen

Vergewissern Sie sich, dass aufgrund (veränderter) Umgebungsbedingungen im Innern des Geräts keine Prozessgase kondensieren, da das die Funktionalität des Geräts beeinträchtigen könnte.

2.4. Montage

9.19.119C

Damit das Gerät optimal funktionieren kann, sind die folgenden Richtlinien zu beachten:

- Installieren Sie den MASS-STREAM D-6400 nach Möglichkeit in einer aufrechten Position, insbesondere dann, wenn der Betriebsdruck über 10 bar liegt.
- Wird das Gerät so installiert, dass der Durchfluss auf- oder abwärts erfolgt, empfiehlt es sich, <u>den</u> <u>Nullpunkt zu justieren</u>.
- Vermeiden Sie eine Installation in unmittelbarer N\u00e4he von mechanischen Vibrations- und/oder W\u00e4rmequellen.
- Verwenden Sie das Gerät in einer Umgebung, in der Umgebungsdruck und -temperatur stabil sind.

Nach Möglichkeit sollte das Gerät horizontal (aufrecht) installiert werden. Falls Sie große Massendurchflussregler (D-6471 und größer) in unterschiedlichen Einbaulage installieren, sollten Sie sich vorher auf jeden Fall an Ihren Vertriebspartner oder Bronkhorst Instruments GmbH wenden.

Um eine stabile Befestigung zu ermöglichen, befinden sich an der Unterseite der Gerätebasis Gewindebohrungen. Die exakte Größe und Lage der Öffnungen können Sie der <u>Maßzeichnung</u> entnehmen.

2.5. Anforderungen an Leitungen

- Um eine zuverlässige Leistung zu gewährleisten, muss sichergestellt sein, dass der Medienstrom nicht kontaminiert ist. Verwenden Sie bei Bedarf eingangsseitig Filter, um einen feuchtigkeits-, ölund partikelfreien Gasstrom zu gewährleisten. Wählen Sie einen Filter mit einer Oberfläche und Porengröße aus, der den Druckabfall auf ein Minimum beschränkt.
- Falls ein Rückfluss auftreten kann, empfiehlt es sich, zusätzlich ein geeignetes Rückschlagventil zu verwenden, dass den zusätzlichen Druckabfall auf ein Minimum beschränkt.

- Verwenden Sie Leitungen oder Rohre, die für die Umgebungsbedingungen der Anwendung (Medien, Höchsttemperatur, maximaler Betriebsdruck) geeignet sind.
- Installieren Sie in einem Abstand von mindestens dem f
 ünfundzwanzigfachen (Innen-) Durchmesser vom Regelger
 ät keinen Druckregler.

Für zuverlässige Messungen ist es wichtig:

- Turbulenzen in der Strömung zu vermeiden.
- Vergewissern Sie sich, dass der Vordruck stabil bleibt und mit dem auf dem Typenschild angegebenen Wert übereinstimmt.
- Vermeiden Sie Querschnittsreduzierungen in den Rohrleitungen sowie abrupte Winkel oder Gegenstände direkt am Ein- und Auslass des Produkts.
- Gerade Rohreinlauf- und Rohrauslaufstrecken gemäß der nachstehenden Tabelle.
- Der Rohrinnendurchmesser muss mindestens dem ein- und ausgangsseitigen Gewinde des Geräts entsprechen.

Gerade Rohreinlauf- und	Model D-6	Übrige Modelle	
Rohrauslaufstrecke Mit Strömungsgleichrichter		Ohne Strömungsgleichrichter	
Eingangsseitig	10 x	20 x	10 x
Ausgangsseitig	4 x	6 x	5 x

Der angegebene Vordruck muss direkt am Eingang des Geräts voll zur Verfügung stehen.

2.6. Medienanschluss

Die Verwendung falscher Prozessanschlusstypen kann aufgrund von Beschädigungen an den Eingangsgewinden der Prozessanschlüsse zu Mediumsleckagen führen. Dies kann je nach Art des Mediums und des ausgeübten Systemdrucks zu schweren Verletzungen führen.

• Verwenden Sie nur Prozessanschlüsse, die mit den ISO 1179-Prozessanschlüssen mit G-Gewinde nach BSPP (ISO 228-1) kompatibel sind.

Lose Anschlüsse und Verschraubungen können zu Mediumsleckagen führen, die je nach Art des Mediums und des angewandten Systemdrucks zu schweren Verletzungen führen können. Check all connections for leaks, before and after pressurizing the system.

 Überprüfen Sie alle Anschlüsse vor und nach der Druckbeaufschlagung des Systems auf Dichtigkeit.

- Entfernen Sie alle Schutzkappen vom Ein- und Auslass des Produkts.
- Stellen Sie sicher, dass die Rohrverbindungen mit ISO 1179 BSPP-Prozessanschlüssen kompatibel sind.
- Montieren Sie die Prozessanschlüsse gemäß den Anweisungen des Herstellers.
- Beachten Sie bei der Installation des Produkts die Durchflussrichtung, die durch den Pfeil auf dem Produkt angezeigt wird.

2.7. Elektrischer Anschluss

Elektrische Anschlüsse sind mit Standardkabeln oder gemäß den jeweiligen Anschlussdiagrammen herzustellen. Die werksseitig installierten 8DIN-Einstellungen sind im Anschlussdiagramm angegeben. Vergewissern Sie sich, dass die Stromversorgung der im Anschlussdiagramm angegebenen Leistung entspricht und dass für die Stromversorgung doppelte oder verstärkte Isolierung verwendet wird.

MASS-STREAM D-6400 Geräte werden je nach Konfiguration oder Feldbus-System (sofern zutreffend) mit +15...+24 V oder +24 VDC versorgt.

Um Schäden durch Verpolung zu vermeiden, empfiehlt sich die Verwendung einer 2A-Sicherung in der direkten +Us-Leitung.

Strom abschalten bevor ein Gerät elektrisch angeschlossen oder getrennt wird.

Das in diesem Dokument beschriebene Gerät enthält Elektronikbauteile, die sensibel auf **elektrostatische Entladungen** reagieren. Bei der Installation, beim Anschließen und Trennen sowie beim Ausbau der Elektronik ist auf eine ordnungsgemäße Handhabung zu achten, um Schäden zu vermeiden.

Das Gerät trägt das CE-Zeichen und **entspricht den EMV-Vorschriften**. Zur Einhaltung der EMV-Vorschriften ist es erforderlich, geeignete Kabel, Steckverbinder und Kabeldurchführungen zu verwenden. Bronkhorst empfiehlt die Verwendung unserer Standardkabel. Diese Kabel besitzen die richtigen Anschlüsse. Eventuell vorhandene lose Adern sind gekennzeichnet, um Anschlussfehler zu vermeiden. Bei Verwendung anderer Kabel muss der Kabeldurchmesser ausreichend für die Stromaufnahme des Geräts sein. Spannungsverluste sind so gering wie möglich zu halten. Wenden Sie sich im Zweifelsfall an Ihren Bronkhorst-Vertreter.

Vergewissern Sie sich beim Anschluss des Produkts an andere Geräte, dass die Abschirmung unversehrt ist. Verwenden Sie grundsätzlich abgeschirmte Signal- und Kommunikationskabel; auch die Anschlussklemmen müssen stets abgeschirmt sein.

2.8. Feldbus-Anschluss

Verfügt das Gerät über eine dedizierte Feldbus-Schnittstelle, kann es in einem digitalen Feldbus-System mit RS485-Kommunikation verwendet werden. Bei FLOW-BUS-, Modbus-, CANopen- und DeviceNet[™]-Systemen kann der Feldbus-Anschluss auch zur Stromversorgung des Geräts verwendet werden. Bei anderen Feldbus-Systemen erfolgt die Stromversorgung des Geräts grundsätzlich über den 8DIN-Stromanschluss an der Oberseite des Geräts.

Betreiben Sie das Gerät auf keinen Fall gleichzeitig mit **zwei verschiedenen Stromquellen** (z.B. Feldbus und Plug-in Power Supply). Dadurch wird die Leiterplatte unwiderruflich beschädigt.

Überprüfen Sie grundsätzlich die gesamte Stromaufnahme Ihrer Geräte, bevor Sie sie an ein Feldbus-System anschließen. Die maximale Leistung des Netzteils darf auf keinen Fall überschritten werden.

Wenden Sie sich für weitere Informationen an Ihren Bronkhorst-Vertreter, wenn Sie Hilfe bei der Einrichtung einer Buskonfiguration benötigen.

Möglich ist ein gleichzeitiger Betrieb über die analoge Schnittstelle, die RS232-Schnittstelle und den ausgewählten Feldbus. Der spezielle Parameter "Regelmodus" gibt an, über welchen Anschluss das Gerät gesteuert wird: analog und digital (über Feldbus oder RS232). Auch mehrere gleichzeitig verwendete Schnittstellen können parallel ausgelesen werden. Bei der Änderung eines Parameterwertes wird der zuletzt bestätigte Wert verarbeitet.

2.8.1. FLOW-BUS

FLOW-BUS ist ein von Bronkhorst[®] entwickelter Feldbus für die digitale Kommunikation zwischen digitalen Geräten, der auf RS485-Technologie basiert und die optionale Host-Steuerung über einen Windows-Rechner bietet.

Eigenschaften:

- Baudrate 187500 (Standard) oder 400000 Baud
- +15...24 VDC Versorgungsspannung
- Einfache Installation und Kommunikation mit anderen Bronkhorst[®]-Geräten
- Automatische Knotensuche und Busoptimierung (Gap Fixing)
- RS232-Kommunikation (ProPar) mit Windows-Rechner (lokaler Host)
- Anschluss von bis zu 120 Geräten an einen einzigen Bus
- Maximale Buslänge: 600 m

Weitere Informationen zur Einrichtung eines FLOW-BUS-Netzwerks finden Sie in der Bedienungsanleitung FLOW-BUS-Schnittstelle (Dokumentnr. 9.17.024).

2.8.2. Modbus

Modbus ist ein dreiadriges Feldbus-Kommunikationssystem für den Austausch von Parameterwerten auf RS485-Basis. In diesem System ist jedes Instrument/Gerät mit einem Mikrocontroller für die jeweilige dedizierte Aufgabe ausgestattet. Das Gerät agiert als Slave, was bedeutet, dass die gesamte Kommunikation (Befehle und Anzeige) von einem Master-Gerät im Modbus-System ausgelöst wird.

Eigenschaften:

- Baudrate einstellbar zwischen 9600 und 256000 Baud (Standard: 19200 Baud)
- +15...24 VDC Versorgungsspannung
- Anschluss von bis zu 247 Geräten an einen einzigen Bus
- Unterstützt RTU- und ASCII-Protokolle

Weitere Informationen zur Einrichtung eines Modbus-Netzwerks finden Sie in der <u>Bedienungsanleitung</u> <u>Modbus-Schnittstelle</u> (Dokumentnr. 9.17.035).

2.8.3. Andere Feldbusse

Informationen zu anderen Feldbussen finden Sie im jeweiligen Feldbus-Handbuch.

2.9. Kommunikationsschnittstelle

Der 8DIN-Standardanschluss bietet die folgenden Kommunikationsschnittstellen:

- Analog (0...5 VDC/0...10 VDC/0...20 mA/4...20 mA)
- Digital RS232 (ProPar) oder RS485 (FLOW-BUS oder Modbus)

Darüber hinaus kann das Gerät mit einer der folgenden optionalen digitalen Feldbus-Schnittstellen ausgestattet werden:

- CANopen
- DeviceNet[™]
- EtherCAT[®]
- EtherNet/IP
- FLOW-BUS
- Modbus (ASCII/RTU/TCP)
- POWERLINK
- PROFIBUS DP
- PROFINET

Bei der Bestellung wird das standardmäßige Kommunikationsprotokoll (analog, digital RS232 oder Feldbus) angegeben.

2.9.1. RS232-Kommunikation

Sie können das Gerät mit einem Windows-Rechner über RS232 überwachen und betreiben. Für den Betrieb können die kostenlosen Software-Tools von Bronkhorst verwendet werden, die eine umfassende Benutzeroberfläche für die digitalen Funktionen der Geräte bieten.

Im Beispiel werden die folgenden Teile verwendet:

- 1. MASS-STREAM D-6400
- 2. RS232-T-Kabel (Art.-Nr. 7.03.444)
- 3. RS232/USB-Konverter (Art.-Nr. 9.09.122)
- 4. Windows-Rechner (für Anzeige und Steuerung)
- 5. Plug-in Power Supply (PiPS, Art.-Nr. 7.03.423)

Verbinden Sie das T-Kabel mit dem 8DIN-Anschluss an der Oberseite des Geräts und verwenden Sie den RS232/USB-Konverter, um das andere Ende des Kabels mit einem freien USB-Port am Computer zu verbinden.

Zur Kommunikation mit einer SPS (PLC) oder einem anderen Steuergerät kann ein 8DIN-Kabel mit einem losen Ende (Art.-Nr. 7.03.191, 7.03.540 oder 7.03.541) verwendet werden. Schließen Sie die benötigten Signale gemäß dem <u>RS232-Anschlussdiagramm</u> an.

Die maximal zulässige Kabellänge für die RS232-Kommunikation bei einer Baudrate bis zu 38400 Baud beträgt 10 m. Verwenden für höhere Baudraten eine Kabellänge von maximal 3 m.

- Weitere Informationen über die Kommunikation über die RS232-Schnittstelle finden Sie in der <u>RS232-Anleitung</u> (Dokumentnr. 9.17.027).
- Sie können die Bronkhorst customer software und Begleitdokumentation im Bereich Zubehör und Software auf den Produktseiten von Bronkhorst® (<u>www.bronkhorst.com/produkte</u>) herunterladen.

2.9.2. Feldbus-Kommunikation

Sie können das Gerät über den optionalen Feldbus-Anschluss auf der Oberseite mit einem Feldbus-System verbinden. Parallel ist die RS232-Kommunikation mit einem Windows-Rechner über den 8DIN-Anschluss auf der Oberseite des Geräts möglich.

Im Beispiel werden die folgenden Teile verwendet:

- 1. MASS-STREAM D-6400 mit DeviceNet[™]-Schnittstelle
- 2. DeviceNet[™] M12-Kabel (Art.-Nr. 7.03.323)
- 3. DeviceNet[™] M12-Y-Adapter (Art.-Nr. 7.03.319)
- 4. RS232-Kabel (Art.-Nr. 7.03.340)
- 5. RS232/USB-Konverter (Art.-Nr. 9.09.122)
- 6. Windows-Rechner (für Anzeige und Steuerung)

Bitte beachten Sie, dass es sich bei den Feldbuskomponenten in diesem Beispiel um spezifische DeviceNet™-Komponenten handelt. Für die Verbindung mit anderen Feldbus-Systemen werden andere Kabel und Adapter benötigt.

3. Betrieb

Nachdem der **MASS-STREAM D-6400** korrekt installiert wurde und alle Sicherheitsvorkehrungen getroffen wurden, kann das Gerät verwendet werden, um Massendurchflüsse im System zu messen und/oder zu regeln.

Das <u>Bronkhorst FlowSuite</u>™ Software-Tool bietet eine grafische Schnittstelle zum Instrument zur Überwachung und Änderung der Instrumentenparameter.

3.1. Hoch- und Herunterfahren

- Es wird empfohlen, die Versorgungsspannung einzuschalten, bevor Mediendruck erzeugt wird, und die Stromversorgung erst wieder abzuschalten, nachdem der Mediendruck abgelassen wurde.
- Für optimale Leistung des Geräts wird eine Aufwärm- und Stabilisierungszeit von mindestens 30 Minuten empfohlen, bevor Sie das Gerät zum Messen und/oder Regeln einsetzen. Diese Phase kann mit oder ohne Mediendurchfluss erfolgen.

Vermeiden Sie bei der Druckbeaufschlagung des Mediensystems schlagartige Druckänderungen und bringen Sie das System allmählich in den Betriebsstatus; öffnen Sie die Medienzufuhr langsam und vorsichtig.

3.2. Erste Verwendung

In Systemen für korrosive oder reaktive Medien ist eine Spülung von mindestens 30 Minuten mit einem trockenen, inerten Gas (z.B. Stickstoff oder Argon) vor der Verwendung absolut notwendig. Nach der Verwendung von korrosiven, reaktiven oder gefährlichen Medien (z.B. giftig oder entzündlich) ist ebenfalls eine Spülung notwendig, bevor das Mediensystem der Luft ausgesetzt werden kann.

Wurde das Gerät in einer Position mit Aufwärts- oder Abwärtsfluss installiert, wird empfohlen, den Nullpunkt zu justieren, bevor das Gerät zum ersten Mal verwendet wird. Siehe <u>Justieren des</u> <u>Nullpunkts</u> für Hintergrundinformationen und Anleitungen.

Nach dem Wechsel auf eine andere Medieneinstellung muss das Gerät unter Prozessbedingungen auf null gestellt werden. Siehe <u>Justieren des Nullpunkts</u> für Hintergrundinformationen und Anleitungen.

3.3. Massendurchflussmessung und -regelung

Bitte beachten Sie beim Hochfahren, dass es ein paar Sekunden dauert, bis die Gerätelektronik startet. Sobald der Startvorgang beendet ist (grüne LED leuchtet durchgehend), ist das Gerät bereit, um Massendurchflüsse zu messen. Die optimale Genauigkeit wird allerdings erst nach der Aufwärmphase erreicht (siehe <u>Hoch- und</u> <u>Herunterfahren</u>).

Nach dem Hochfahren orientiert sich das Regelventil am zuletzt eingestellten Sollwert. Beträgt der Sollwert 0, schließt sich das Ventil (normal offen) oder bleibt geschlossen (normal geschlossen). Das Ventil bleibt geschlossen, bis das Gerät einen neuen, gültigen

Sollwert von der aktiven Sollwertquelle erhält. Anschließend öffnet der interne PID-Regler umgehend das Regelventil, bis die gemessene Durchflussmenge dem Sollwert entspricht. Die sich daraus ergebende Durchflussmenge gilt, bis ein anderer Sollwert eingestellt wird.

MASS-STREAM D-6400 Geräte erreichen höchste Genauigkeit, wenn der angegebene Vor-/Nachdruck, die angegebene Temperatur sowie die Prozessgasbedingungen gelten. Allerdings ist die Funktionalität des Geräts unter vielen verschiedenen Bedingungen gewährleistet. Es wird dringend empfohlen, die dem Gerät beiliegende Bronkhorst customer software zu verwenden, um die korrekten Prozessbedingungen einzustellen, falls die tatsächlichen Prozessbedingungen von den Bedingungen abweichen, für die das Gerät eingestellt ist (siehe <u>Ändern der Medieneinstellung</u>).

Obwohl **MASS-STREAM D-6400** Geräte über eine hohe Temperaturstabilität verfügen, wird die beste Genauigkeit erreicht, wenn die Gastemperatur der Umgebungstemperatur entspricht und das Gerät auf einer festen (wärmeleitenden) Oberfläche montiert ist.

MASS-STREAM D-6400 Geräte bieten hinreichenden Schutz gegen schlagartige Druckänderungen innerhalb der Betriebsgrenzen im System, aber sind für Druckschwankungen anfällig. Um eine optimale Regelstabilität zu gewährleisten, sorgen Sie für einen stabilen (druckgeregelten) Vordruck mit hinreichender Pufferkapazität zwischen Druckregler und Gerät und vermeiden Sie es, mehrere Geräte oder Regelventile in unmittelbarer Nähe zu anderen Geräten oder Regelventilen zu installieren, die durch geringvolumige Leitungen miteinander verbunden sind.

3.3.1. Ändern der Medieneinstellung

MASS-STREAM D-6400 Geräte verfügen über eine interne Gasdatenbank, in der die Gaseigenschaften enthalten sind, die benötigt werden, um andere Gase für die Multi Fluid/Multi Range-Funktion (MFMR) auszuwählen. Bei MFMR-fähigen Geräten sind ab Werk diverse Standardmessbereiche voreingestellt, die für die Verwendung mit verschiedenen Medien konfiguriert werden können.

Die Einstellung von Medien und Bereichen sowie die Auswahl des aktiven Medium können über RS232 mit der kostenlos erhältlichen Software Bronkhorst FlowSuite vorgenommen werden.

Bronkhorst FlowSuite bietet folgende Hauptfunktionen:

- Festlegen und Speichern von bis zu acht verschiedenen Medien im Gerät
- Speichern von Medieneigenschaften für alle Gase
- Ändern von Vor- und/oder Nachdruck anhand der tatsächlichen Prozessbedingungen
- Bereichsanpassung der vollen Durchflussmenge an den unterstützten Durchflussbereich des Geräts
- Ändern der Regelgeschwindigkeit pro Medieneinstellung f
 ür schnellere oder langsamere (st
 örungsfreiere)
 Durchflussregelung

Die eingegebenen Werte einschließlich der benötigten Reglereinstellungen sind im Gerät gespeichert. Beim Wechsel auf eine andere Medieneinstellung werden die Reglereinstellungen automatisch an die neuen Prozessbedingungen angepasst, sodass die PID-Reglereinstellungen nicht manuell geändert werden müssen.

Sie können Bronkhorst FlowSuite und die dazugehörigen Dokumente von den Produktseiten der Bronkhorst-Website herunterladen: (www.bronkhorst.com/products).

Verwenden Sie RS232-Kommunikation über den 8DIN-Anschluss, um die Verbindung zu Bronkhorst FlowSuite herzustellen. Falls keine Verbindung hergestellt werden kann, nutzen Sie die Neustartfunktion des <u>Multifunktionsschalters</u>, um in den Konfigurationsmodus zu wechseln und RS232-Kommunikation zu aktivieren. Denken Sie daran, das Gerät in den ursprünglichen Kommunikationsmodus zurückzuversetzen, nachdem Sie die benötigten Parameter eingestellt haben.

Es wird empfohlen, Bronkhorst FlowSuite ausschließlich in einer deaktivierten Umgebung zu verwenden. Bronkhorst FlowSuite versetzt das Gerät in den <u>Valve Safe State</u> (sicheren Ventilstatus), nachdem die Verbindung hergestellt wurde. Denken Sie daran, die Kommunikation zwischen Bronkhorst FlowSuite und dem Gerät richtig zu beenden, um wieder in den normalen Betriebsmodus zu wechseln.

Nach dem Wechsel auf eine andere Medieneinstellung muss das Gerät unter Prozessbedingungen auf null gestellt werden. Siehe <u>Justieren des Nullpunkts</u> für Hintergrundinformationen und Anleitungen.

3.4. Valve Safe State

Hat ein Regelinstrument keinen Strom oder kann es nicht mit dem Feldbus-Netzwerk kommunizieren (sofern zutreffend), kehrt das Regelventil automatisch in den Standardzustand (auch "Safe State" [sicherer Status] genannt) zurück; das bedeutet geschlossen für ein "normal geschlossenes" Ventil (n/c) und komplett offen für ein "normal offenes" Ventil (n/o). Dabei sind die typischen Prozessbedingungen, unter denen das Gerät verwendet wird, zu beachten (zum Beispiel die Prozessmedien und Umgebungsbedingungen; siehe auch <u>LED-Anzeigen</u>); der Standardzustand wird allgemein als sicher erachtet.

Überprüfen Sie das Typenschild oder die technischen Spezifikationen, um zu ermitteln, welcher Ventiltyp in Ihrem Gerät verbaut ist (sofern zutreffend).

3.5. Manuelle Regelung

An der Oberseite des Gehäuses befinden sich zwei LED-Anzeigen und ein Multifunktionsschalter, die verwendet werden können, um das Gerät visuell zu überwachen und diverse Funktionen manuell zu starten.

3.5.1. LED-Anzeigen

Die LEDs an der Oberseite des Geräts zeigen an, ob es betriebsbereit ist. Die Bedeutung mancher Anzeigen hängt von der spezifischen Feldbus-Schnittstelle am Gerät ab (sofern installiert).

- (Grün) Modus: Betriebsmodusanzeige
- (Rot) Fehler: Fehler-/Warnmeldungen

In den folgenden Tabellen sind die verschiedenen LED-Anzeigen aufgeführt:

• Grün			
Muster	Zeit	Anzeige	
Aus	Dauerhaft	Abgeschaltet oder Programm außer Betrieb	
Ein	Dauerhaft	Normaler Betriebsmodus	
Kurzes Blinken	0,1 Sek. an, 2 Sek. aus	Keine Kommunikation, Ventile befinden sich im sicheren Standardzustand	
Blinken	0,2 Sek. ein, 0,2 Sek. aus	Sonderfunktionsmodus: Das Gerät führt gerade eine Sonderfunktion aus	
Langes Blinken	2 Sek. ein, 0,1 Sek. aus	Konfigurationsmodus: Der 8DIN-Anschluss ist für die RS232- Kommunikation (ProPar) bei 38400 Baud konfiguriert	

Rot			
Muster	Zeit	Anzeige	
Aus	Dauerhaft	Kein Fehler	
Ein	Dauerhaft	Kritischer Fehler:	Das Gerät muss vor der Verwendung gewartet werden
Kurzes	0,1 Sek.	FLOW-BUS	Knoten belegt: Gerät neu installieren
Blinken	an, 2 Sek. aus	PROFIBUS DP Kein Datenaustausch zwischen Master und Slave (automatische Wiederherstellung)	
		Modbus	Daten werden empfangen oder gesendet
		DeviceNet™	Geringfügiger Kommunikationsfehler
		EtherCAT®	Gerät ist nicht im Betriebsmodus
		PROFINET	Keine Applikationsbeziehung aufgebaut
		FLOW-BUS	Warten auf Kommunikation
	0,2 Sek.	PROFIBUS DP	Nicht verwendet
Blinken	ein,	Modbus	Nicht verwendet
	0,2 Sek.	DeviceNet™	Bus ohne Strom
	aus	EtherCAT [®]	Nicht verwendet
		PROFINET	Nicht verwendet
Langes	2 Sek. ein,	FLOW-BUS	Nicht verwendet
Dlinkon	0,1 Sek.	PROFIBUS DP	Parameter nicht verfügbar
DIITIKETI	aus	Modbus	Nicht verwendet

		DeviceNet™ EtherCAT® PROFINET	Schwerer Kommunikationsfehler; manuelles Eingreifen notwendig Konfigurationsfehler Konfigurationsfehler (angeforderter Parameter ist nicht verfügbar)
Grün und	rot (abwech	selnd)	
Muster	Zeit	Anzeige	
Langsames Blinken	1 Sek. an, 1 Sek. aus	Alarmanzeige: Mir erreicht oder Batc	nimum-/Maximumalarm; Alarm beim Hochfahren oder Grenzwert hgröße erreicht
Normales Blinken	0,2 Sek. ein, 0,2 Sek. aus	Blinkmodus: Wen LEDs des Geräts,	n ein Befehl an den Blinkparameter gesendet wird, blinken die um den physischen Standort anzuzeigen
Schnelles Blinken	0,1 Sek. ein, 0,1 Sek. aus	Gewählte Aktion g	gestartet (nach Loslassen des Multifunktionsschalters)

DeviceNet™-Geräte haben andere LED-Anzeigen, bei denen die in diesem Abschnitt beschriebenen Standardanzeigen ersetzt wurden (siehe unten).

3.5.1.1. Schnittstellenstatus

Geräte mit einer EtherCAT^{®-} oder PROFINET-Schnittstelle verfügen über eine dritte LED (zweifarbig: grün und rot), um den Zustand der Kommunikationsschnittstelle anzuzeigen. Diese Status-LED kann Folgendes anzeigen:

Muster		Zeit	EtherCAT®	PROFINET
•	Aus	Dauerhaft	Ausgeschaltet oder fährt hoch	Schnittstelle (noch) nicht gestartet
•	Ein, grün	Dauerhaft	Normalbetrieb	Normalbetrieb, Applikationsbeziehung mit I/O- Controller hergestellt
•	Blinken, grün	0,2 Sek. ein, 0,2 Sek. aus	Vor-Betriebsstatus	Fährt hoch
•	Blinken, rot	0,2 Sek. ein, 0,2 Sek. aus	Ungültiger Statuswechsel	Verbindungsstatus OK, keine Applikationsbeziehung mit I/O- Controller
•	Einfaches Blinken, rot	0,2 Sek. ein, 1 Sek. aus	Ungültige Konfiguration	n. z.
•	Doppeltes Blinken, rot	0,2 Sek. ein, 0,2 Sek. aus, 0,2 Sek. ein, 1 Sek. aus	Kommunikationszeitüberschreitung (z.B. Kommunikationskabel getrennt)	n. z.
•	Ein, rot	Dauerhaft	n. z.	Keine Verbindung

Ethernet-Anzeigen

RJ-45-Anschlussbuchsen an Gerät mit einer EtherCAT[®]- oder PROFINET-Schnittstelle haben zwei integrierte LED-Anzeigen mit Standard-Ethernet-Funktion.

Gelb: Ethernet-Geschwindigkeit

Grün: Ethernet-Verbindung/Aktivität

3.5.1.2. DeviceNet[™]-Anzeigen

DeviceNet™-Geräte verfügen über zwei zweifarbige LEDs (grün/rot), um den Netzwerk- und Modulstatus anzuzeigen. Die folgenden Anzeigen ersetzen die Standard-LED-Anzeigen:

- •/• (grün/rot) Netzwerkstatus (NET; links)
- •/• (grün/rot) Modulstatus (MOD; rechts)

In den Tabellen auf der nächsten Seite sind die verschiedenen LED-Anzeigen aufgeführt.

Netzstatus				
Muster	Zeit	Anzeige		
Aus	Dauerhaft	Ausgeschaltet oder offline		
Ein, grün	Dauerhaft	Online, verbunden, Verbindung OK		
 Blinken, grün 	0,5 Sek. ein, 0,5 Sek. aus	Online, nicht verbunden: Das Gerät ist online, aber ist nicht mit anderen Knoten verbunden oder keinem Master zugeordnet		
 Blinken, rot 	0,5 Sek. ein, 0,5 Sek. aus	Verbindungszeit überschritten		
• Ein, rot	Dauerhaft	Kritischer Verbindungsfehler: Das Gerät kann nicht mit dem Netzwerk verbunden werden		

Modulstatus	Modulstatus				
Muster	Zeit	Anzeige			
 Aus 	Dauerhaft	Keine Spannung			
 Ein, grün 	Dauerhaft	Normaler Betriebsmodus			
 Blinken, grün 	0,5 Sek. ein, 0,5 Sek. aus	Gerät befindet sich im Standby-Modus oder Konfiguration fehlt, ist unvollständig oder falsch			
•/• abwechselnd	0,5 Sek. ein, 0,5 Sek. aus	Selbsttestmodus			
Ein, rot	Dauerhaft	Kritischer Fehler: Das Gerät muss vor der Verwendung gewartet werden			

3.5.2. Multifunktionsschalter

Mit dem Multifunktionsschalter des Geräts neben den Anzeige-LEDs können diverse Sonderfunktionen des Geräts manuell gestartet werden. Diese Funktionen sind sowohl im analogen als auch im digitalen Betriebsmodus verfügbar.

3.5.2.1. Normale Betriebsfunktionen

- Um diese Funktionen nutzen zu können, drücken Sie den Schalter und halten Sie ihn gedrückt, während sich das Gerät im normalen Betriebsmodus befindet (grüne LED leuchtet).
- Solange der Schalter gedrückt ist, wiederholt sich die Blinksequenz der Muster der LEDs, wobei jedes Muster für eine Funktion steht.
- Alle Anzeigen dieser Sequenz werden dauerhaft angezeigt.
- Jedes Muster wird mehrere Sekunden lang angezeigt; in der folgenden Tabelle gibt die Spalte "Wartezeit" den Zeitraum innerhalb der Sequenz an, in dem die LEDs im entsprechenden Muster blinken.
- Lassen Sie für den Start einer Funktion den Schalter los, wenn die LEDs das Muster der gewünschten Funktion anzeigen.

●Grün	Rot	Wartezeit	Funktion
Aus	Aus	01 Sek.	Keine Aktion
Aus	Aus	14 Sek.	 Bei Min/Max-Alarm: Alarm zurücksetzen FLOW-BUS: Automatische Installation am Bus - Gerät kann freie Knotenadresse abrufen, wenn konfigurierte Knotenadresse belegt ist

			Hinweis: Min/Max-Alarm (sofern zutreffend) muss zurückgesetzt werden, bevor		
			automatische Installation durchgeführt werden kann.		
Au 6	Ein		Gerät zurücksetzen: Alle Warnungen und Fehlermeldungen löschen und		
Aus	Aus Ein 48 Sek.		Gerät neu starten		
Fin	Ein Aus 812 Sek.		Gerät zurücksetzen: Alle Warnungen und Fehlermeldungen löschen und		
			Gerät neu starten		
		10 10	FLASH-Modus für Firmware-Update aktivieren:		
Ein	Ein	Sek.	• Das Gerät wird heruntergefahren, und beide LEDs werden ausgeschaltet		
			Beim nächsten Hochfahren ist das Gerät wieder aktiv		

Siehe <u>Justieren des Nullpunkts</u> für Hintergrundinformationen und Anleitungen zur Justierung des Nullpunkts eines Geräts.

Lesen Sie sich zuerst die Anweisungen durch, bevor Sie einen Nullpunktabgleich vornehmen.

3.5.2.2. Startfunktionen

- Betätigen Sie den Schalter und halten Sie ihn beim Start des Geräts gedrückt, um auf diese Funktionen zuzugreifen.
- Solange der Schalter gedrückt ist, wiederholt sich die Blinksequenz der Muster der LEDs, wobei jedes Muster für eine Funktion steht.
- Alle Anzeigen innerhalb dieser Sequenz blinken (0,2 Sek. an, 0,2 Sek. aus).
- Jedes Muster wird mehrere Sekunden lang angezeigt; in der folgenden Tabelle gibt die Spalte "Wartezeit" den Zeitraum innerhalb der Sequenz an, in dem die LEDs im entsprechenden Muster blinken.
- Lassen Sie für den Start einer Funktion den Schalter los, wenn die LEDs das Muster der gewünschten Funktion anzeigen.

●Grün	Rot	Wartezeit	Funktion		
Aus	Aus	01 Sek.	Keine Aktion		
Aus	Ein	48 Sek.	Auf Werkseinstellungen zurücksetzen (mit Ausnahme der Kommunikationseinstellungen)		
Ein	Aus	812 Sek.	FLOW-BUS: Automatische Installation am Bus: Gerät kann eine freie Knotenadresse vom FLOW-BUS-System abrufen Andere Protokolle: Keine Aktion		
Ein	Ein	1216 Sek.	 Andere Protokolle: Keine Aktion Konfigurationsmodus aktivieren Der 8DIN-Anschluss ist auf RS232-Kommunikation (ProPar) bei einer Baudrate von 38400 eingestellt Im Konfigurationsmodus blinkt die grüne LED (2 Sek. ein, 0,1 Sek. aus) Der Konfigurationsmodus bleibt nach dem Herunterfahren aktiv und kann deaktiviert werden, indem diese Funktion beim nächsten Gerätestart 		

3.5.2.3. Control mode (Regelmodus) - Anzeigen/Ändern

Regelmodus anzeigen

- Wenn Sie den Schalter 2 mal kurz im Abstand von 1 Sekunde im normalen Betriebsmodus betätigen, zeigt das Gerät den aktuellen Regelmodus mit einer Reihe aufeinanderfolgender LED-Anzeigemuster an.
- Wie oft die LEDs blinken, hängt vom aktuellen Wert des Parameters Control Mode ab (siehe Spezielle Parameter).

Schritt	Muster		Anzeige
1.	Grün	• •	Anzahl der Blinksignale gibt den Parameterwert in Zehnteln an
2.	Rot	•	Anzahl der Blinksignale gibt die Einheiten des Parameterwerts an

Beispiele:

- Bei Wert 1 (Regelmodus "Analog input") blinkt die grüne LED 0 mal und die rote LED 1 mal
- Bei Wert 22 (Regelmodus "Valve Safe State") blinken die grüne und die rote LED jeweils 2 mal

Regelmodus ändern

- Wenn Sie den Schalter 4 mal kurz im Abstand von 1 Sekunde im normalen Betriebsmodus betätigen, wechselt das Gerät in einen Status, in dem der Regelmodus geändert werden kann.
- Dies geschieht in 2 Schritten, die jeweils durch ein LED-Anzeigemuster dargestellt werden (grün oder rot; siehe folgende Tabelle).
- Wie oft die LEDs blinken, hängt von den verfügbaren Werten des Parameters Control Mode ab (siehe <u>Spezielle</u> <u>Parameter</u>).
- Zu Beginn jedes Schrittes blinken die entsprechenden LEDs schnell (0,1 Sekunden ein, 0,1 Sekunden aus). Die damit zusammenhängende Aktion wird gestartet, wenn Sie den Schalter drücken und gedrückt halten; die LEDs blinken langsamer (0,5 Sekunden ein, 0,5 Sekunden aus).

Schritt	Muster		Höchste Blinkfrequenz	Maßnahme
1.	Grün	•	2	Parameterwert in Zehnteln einstellen
2.	Rot	•	9	Einheiten des Parameterwerts einstellen

Befolgen Sie diese Anweisungen, um einen Schritt auszuführen:

- Betätigen Sie den Schalter und halten Sie ihn gedrückt (LEDs blinken langsamer)
- Um den Wert 0 (null) zu wählen, lassen Sie den Schalter nach 1 Sekunde los, ansonsten:
- Zählen Sie, wie oft die LED blinkt
- Lassen Sie den Schalter los, wenn der gewünschte Wert erreicht ist
- Falls Sie sich verzählen, halten Sie den Schalter gedrückt und warten Sie, bis das Maximum erreicht ist und die Sequenz von vorne beginnt

Sobald Schritt 1 beendet ist, fährt das Gerät automatisch mit Schritt 2 fort. Sobald beide Schritte beendet sind, kehrt das Gerät wieder in den normalen Betriebsmodus zurück.

Wird der Schalter nicht innerhalb von 60 Sekunden nach Beginn eines Schrittes betätigt, werden alle Änderungen rückgängig gemacht, und das Gerät kehrt wieder in den normalen Betriebsmodus zurück.

Bitte beachten Sie, dass dieses Verfahren das Gerät auch in den <u>Standardregelmodus</u> versetzt (im Gegensatz zur digitalen Einstellung des Regelmodus).

3.5.2.4. Netzwerkeinstellungen - Anzeigen/Ändern

Netzwerkeinstellungen anzeigen

• Wenn Sie den Schalter 3 mal kurz im Abstand von 1 Sekunde im normalen Betriebsmodus betätigen, zeigt das Gerät die aktuelle Knotenadresse und Baudrate mit einer Reihe aufeinanderfolgender LED-Anzeigemuster an.

Schritt	t Muster		Anzeige
1.	Grün	• •	Anzahl der Blinksignale gibt den Parameterwert in Zehnteln an
2.	Rot	• •	Anzahl der Blinksignale gibt die Einheiten des Parameterwerts an
3.	Grün und rot (gleichzeitig)	• •	Anzahl der Blinksignale gibt die Baudrate an

Beispiele:

- Für die Knotenadresse 35 blinkt die grüne LED 3 mal und die rote LED 5 mal
- Für die Knotenadresse 116 blinkt die grüne LED 11 mal und die rote LED 6 mal

Die Knotenadresse für DeviceNet™ lautet MAC ID.

Anzahl der Blinksignale	Baudrate							
(Index)	FLOW-BUS	Modbus	PROFIBUS DP	DeviceNet™	Ethernet-basiert			
0			Automatisch erkannt					
1	187500	9600	9600	125000	10000000			
2	400000	19200	19200	250000				
3		38400	45450	500000				
4		56000	93750					
5		57600	187500					
6		115200	500000					
7		128000	1500000					
8		256000	3000000					
9			600000					
10			1200000					

Die Anzahl der Blinksignale für die Anzeige der Baudrate gilt für die folgenden Baudraten:

Netzwerkeinstellungen ändern

- Wird der Schalter im normalen Betriebsmodus 5 mal im Abstand von 1 Sekunde kurz gedrückt, wird das Gerät in einen Zustand versetzt, in dem Knotenadresse und Baudrate geändert werden können (nur nicht-Ethernet-basierte Protokolle; Netzwerkparameter für Ethernet-basierte Protokolle (EtherCAT[®], PROFINET) werden vom Feldbus-Master konfiguriert und können nicht am Gerät eingestellt werden).
- Zu Beginn jedes Schrittes blinkt die entsprechende LED bzw. blinken die entsprechenden LEDs schnell (0,1 Sekunden ein, 0,1 Sekunden aus). Die damit zusammenhängende Aktion wird gestartet, wenn Sie den Schalter betätigen und gedrückt halten; die LEDs blinken langsamer (0,5 Sekunden ein, 0,5 Sekunden aus).

Schritt	Muster		Höchste Blinkfrequenz	Maßnahme
1.	Grün	• •	2	Parameterwert in Zehnteln einstellen
2.	Rot	• •	9	Einheiten des Parameterwerts einstellen
3.	Grün und rot (gleichzeitig)	• •	10*	Baudrate-Index einstellen (Anzahl der Blinksignale)

*) Höchstzahl hängt von den unterstützten Baudraten des Feldbus ab. Siehe die vorstehende Tabelle mit Baudraten für unterstützte Baudraten und zugeordnete Indizes.

Befolgen Sie diese Anweisungen, um einen Schritt auszuführen:

- Drücken Sie den Schalter und halten Sie ihn gedrückt (LEDs blinken langsamer)
- Um den Wert 0 (null) zu wählen, lassen Sie den Schalter nach 1 Sekunde los, ansonsten:
- Zählen Sie, wie oft die LED blinkt
- Lassen Sie den Schalter los, sobald der gewünschte Wert erreicht ist
- Falls Sie sich verzählen, halten Sie den Schalter gedrückt und warten Sie, bis das Maximum erreicht ist und die Sequenz von vorne beginnt

Sobald ein Schritt beendet ist, fährt das Gerät automatisch mit dem nächsten Schritt fort. Wenn alle erforderlichen Schritte abgeschlossen sind, kehrt das Gerät wieder in den normalen Betriebsmodus zurück. Wird der Schalter nicht innerhalb von 60 Sekunden nach Beginn eines Schrittes betätigt, werden alle Änderungen des vorherigen Schrittes rückgängig gemacht, und das Gerät kehrt wieder in den normalen Betriebsmodus zurück.

3.5.2.5. Fieldbus 1 selection

Wenn Sie den Schalter 6 mal kurz im Abstand von 1 Sekunde im normalen Betriebsmodus betätigen, zeigt das Gerät die Fieldbus 1 selection mit einer Reihe aufeinanderfolgender LED-Anzeigemuster an.

Schritt	Muster		Anzeige
1.	Grün	• •	Anzahl der Blinksignale gibt den Parameterwert in Zehnteln an
2.	Rot	• •	Anzahl der Blinksignale gibt die Einheiten des Parameterwerts an

Beispiele:

- Wird als Fieldbus 1 Modbus-RTU ausgewählt, blinkt die grüne LED 0 mal und die rote LED 1 mal
- Wird als Fieldbus 1 Profibus-DP ausgewählt, blinkt die grüne LED 1 mal und die rote LED 3 mal

Falls Fieldbus 1 für das Gerät nicht verfügbar ist, gilt die reading / changing bus selection für Fieldbus 2

Anzahl der Blinksignale (Index)	Fieldbus selection	(optional) Fieldbus 1	Fieldbus 2
0	FLOW-BUS	Konfigurierbar	Konfigurierbar
1	Modbus-RTU	Konfigurierbar	Konfigurierbar
2	Propar	Nicht verfügbar	Konfigurierbar
3	Modbus-ASCII	Konfigurierbar	Konfigurierbar
9	CANopen	Nur Anzeige	Nicht verfügbar
10	DeviceNet	Nur Anzeige	Nicht verfügbar
11	EtherCAT	Nur Anzeige	Nicht verfügbar
13	Profibus-DP	Nur Anzeige	Nicht verfügbar
14	Profinet	Nur Anzeige	Nicht verfügbar
18	POWERLINK	Nur Anzeige	Nicht verfügbar
19	EtherNet/IP	Nur Anzeige	Nicht verfügbar
20	Modbus TCP	Nur Anzeige	Nicht verfügbar

Fieldbus 1 selection ändern

Falls Fieldbus 1 für das Gerät nicht verfügbar ist, gilt die reading / changing bus selection für Fieldbus 2

- Wenn Sie den Schalter 7 mal kurz im Abstand von 1 Sekunde im normalen Betriebsmodus betätigen, wechselt das Gerät in einen Status, in dem die Fieldbus 1 selection geändert werden kann.
- Dies geschieht in 2 Schritten, die jeweils durch ein LED-Anzeigemuster dargestellt werden (grün oder rot; siehe folgende Tabelle).
- Wie oft die LEDs blinken, hängt von den verfügbaren Werten des Parameters Fieldbus1 selection ab (siehe vorstehende Tabelle).
- Zu Beginn jedes Schrittes blinken die entsprechenden LEDs schnell (0,1 Sekunden ein, 0,1 Sekunden aus). Die damit zusammenhängende Aktion wird gestartet, wenn Sie den Schalter drücken und gedrückt halten; die LEDs blinken langsamer (0,5 Sekunden ein, 0,5 Sekunden aus).

Schritt	Muster		Höchste Blinkfrequenz	Maßnahme
1.	Grün	• •	2	Parameterwert in Zehnteln einstellen
2.	Rot	• •	9	Einheiten des Parameterwerts einstellen

Befolgen Sie diese Anweisungen, um einen Schritt auszuführen:

- Betätigen Sie den Schalter und halten Sie ihn gedrückt (LEDs blinken langsamer)
- Um den Wert 0 (null) zu wählen, lassen Sie den Schalter nach 1 Sekunde los, ansonsten:
- Zählen Sie, wie oft die LED blinkt
- Lassen Sie den Schalter los, wenn der gewünschte Wert erreicht ist
- Falls Sie sich verzählen, halten Sie den Schalter gedrückt und warten Sie, bis das Maximum erreicht ist und die Sequenz von vorne beginnt

Sobald Schritt 1 (Zehntel) beendet ist, fährt das Gerät automatisch mit Schritt 2 (Einheiten) fort. Sobald beide Schritte beendet sind, kehrt das Gerät wieder in den normalen Betriebsmodus zurück. Wird der Schalter nicht innerhalb von 60 Sekunden nach Beginn eines Schrittes betätigt, werden alle Änderungen rückgängig gemacht, und das Gerät kehrt wieder in den normalen Betriebsmodus zurück.

3.6. Kommunikation

In der nachstehenden Tabelle sind die unterstützten Kommunikationsmodi der **MASS-STREAM D-6400** Geräte aufgeführt:

Anschluss	Тур	Kommunikationsstandard	Feldbus/Protokoll
8DIN-Anschluss	Analog	05 VDC 010 VDC 020 mA 420 mA	n. z.
	Digital	RS232	ProPar
		RS485	FLOW-BUS Modbus ASCII/RTU
Feldbus-spezifisch (M12)	Digital	RS485	FLOW-BUS Modbus ASCII/RTU PROFIBUS DP
		CAN	CANopen DeviceNet™
		Ethernet	EtherCAT [®] Ethernet/IP Modbus TCP/IP POWERLINK PROFINET

Die Kommunikationsstandards (analog und digital) und die Feldbus-Schnittstelle (sofern zutreffend) werden bei der Bestellung festgelegt, d.h.:

- Im analogen Modus wird der vorgegebene Spannungs-/Strombereich des Geräts eingestellt
- Der dedizierte Feldbus-Anschluss gibt lediglich die festgelegte Feldbus-Schnittstelle vor

Gleichzeitige Verwendung analoger und digitaler Schnittstellen

Das Gerät kann gleichzeitig über die analoge und eine digitale Schnittstelle überwacht und betrieben werden, aber akzeptiert nur einen Sollwert von beiden Schnittstellen (das wird als Regelmodus bezeichnet; siehe <u>Spezielle</u> <u>Parameter</u> für weitere Informationen). Im analogen Modus werden die analogen Eingangs- und Ausgangssignale in den digitalen Sollwert bzw. Messparameter umgewandelt. Der Standard-Regelmodus (analog oder digital) wird bei der Bestellung festgelegt.

3.6.1. Analoger Betrieb

Im analogen Betrieb sind die folgenden Signale verfügbar:

- Ausgangssignal: Messwert
- Eingangssignal: Sollwert (nur Regler)

Sollwerte unter 2 % vom Endwert werden als 0 % ausgelegt. Der am 8DIN-Anschluss installierte analoge Schnittstellentyp ist im <u>Modellschlüssel</u> des Geräts enthalten.

3.6.2. Digitaler Betrieb (RS232)

Im digitalen Betrieb über RS232 oder Feldbus (RS485) verfügt das Gerät über weitere Funktionen wie:

- Direkte Anzeige am Anzeige-/Regelmodul oder Hostcomputer
- Diagnose
- <u>Geräteidentifikation</u>
- Justierbare Grenzwerte für Minimum- und Maximum-Alarm (siehe Alarme)
- <u>(Batch-)Zähler</u>

Vergewissern Sie sich, dass die Baudrate des Geräts der Baudrate von Master/Anwendung entspricht, da ansonsten keine Kommunikation hergestellt werden kann. Zum Ändern von Baudrate, Knotenadresse und Paritätseinrichtung siehe Abschnitt Netzwerkkonfiguration.

Die maximale Kabellänge für die RS232-Kommunikation ist 10 m bei Baudraten von bis zu 38400 Baud. Verwenden Sie für höhere Baudraten Kabel mit einer Länge von maximal 3 m.

- Wenn der 8DIN-Anschluss f
 ür die RS485-Kommunikation eingerichtet ist, reagiert das Ger
 ät nicht, wenn es an eine RS232-Konfiguration angeschlossen wird. Nutzen Sie in diesem Fall die Neustartfunktion des <u>Multifunktionsschalters</u>, um in den Konfigurationsmodus zu wechseln und RS232-Kommunikation zu aktivieren.
- Nutzen Sie nach der Konfiguration der erforderlichen Parameter dasselbe Verfahren, um den Konfigurationsmodus zu verlassen und die ursprünglichen Kommunikationseinstellungen wiederherzustellen (ansonsten bleibt der Konfigurationsmodus nach dem Herunterfahren aktiviert).

Weitere Informationen über die Kommunikation über die RS232-Schnittstelle finden Sie in der RS232-Anleitung (Dokumentnr. 9.17.027).

3.6.3. Digitaler Feldbusbetrieb (RS485)

Die nachstehenden optionalen Feldbusse sind für **MASS-STREAM D-6400** Geräte verfügbar. Bei allen aufgeführten Feldbus-Systemen außer FLOW-BUS agieren die Geräte als Slave im Master/Slave-Bussystem. Es findet keine wechselseitige Kommunikation zwischen Slaves statt, nur zwischen Master und Slave.

FLOW-BUS

Digitale Bronkhorst[®]-Geräte können über RS232 mit der kostenlosen Bronkhorst Software überwacht und bedient werden. Diese Programme bieten eine grafische Schnittstelle mit dem (von FLOW-BUS genutzten) ProPar-Protokoll zur Überwachung und für die Änderung der Geräteparameter wie der Auswahl des aktiven Mediums sowie Konfiguration des Feldbus-Anschlusses (sofern zutreffend).

Bei Geräten, die die Definition und Verwendung mehrerer Medien unterstützen, kann Bronkhorst FlowSuite verwendet werden, um Medien im Gerät festzulegen und zu speichern und um das aktive Medium auszuwählen.

- Bronkhorst FlowSuite kann nur verwendet werden, wenn der 8DIN-(Strom-)Anschluss für die RS232-Kommunikation konfiguriert ist. Nutzen Sie erforderlichenfalls die Neustartfunktion des <u>Multifunktionsschalters</u>, um in den Konfigurationsmodus zu wechseln und die RS232-Kommunikation zu aktivieren.
- Denken Sie daran, nach der Konfiguration der erforderlichen Parameter den Konfigurationsmodus zu verlassen und die ursprünglichen Kommunikationseinstellungen wiederherzustellen (ansonsten bleibt der Konfigurationsmodus nach dem Herunterfahren aktiviert).

Modbus

Sie können Geräte in einem Modbus-System mit externer Software als Master-Gerät, wie LabVIEW, ModScan oder einer Modbus SPS (PLC) überwachen und betreiben.

PROFIBUS-DP

Sie können Geräte in einem PROFIBUS DP-System mit externer Software als Master-Gerät, wie TIA Portal (von Siemens) überwachen und betreiben.

Um ein Gerät zu konfigurieren, muss eine so genannte GSD-Datei (General Station Description) in die Software hochgeladen werden. Die GSD-Datei enthält alle notwendigen Konfigurationsdaten, um das Gerät in einem PROFIBUS DP-System zu betreiben, einschließlich aller verfügbaren Betriebsparameter mit ihren Datentypen.

Sie können eine GSD-Datei für Bronkhorst[®]-Geräte von den Produktseiten der Bronkhorst-Website herunterladen: <u>www.bronkhorst.com/products</u>

DeviceNet™

Sie können Geräte in einem DeviceNet™-System mit externer Software als Master-Gerät, wie TIA Portal (von Siemens) überwachen und betreiben.

Um ein Gerät zu konfigurieren, muss eine so genannte EDS-Datei (Electronics Data Sheet) in die Software hochgeladen werden. Die EDS-Datei enthält alle notwendigen Konfigurationsdaten, um das Gerät in einem DeviceNet™-System zu betreiben, einschließlich der Kommunikations- und Netzwerkkonfiguration sowie aller verfügbaren Betriebsparameter mit ihren Datentypen.

Sie können eine EDS-Datei für Bronkhorst[®]-Geräte von den Produktseiten der Bronkhorst-Website herunterladen: <u>www.bronkhorst.com/products</u>

EtherCAT[®]

Sie können Geräte in einem EtherCAT[®]-System mit externer Software als Master-Gerät, wie <%BRANDNAME_SYCON%> (von Hilscher GmbH) überwachen und betreiben.

Um ein Gerät zu konfigurieren, muss eine so genannte ESI-Datei (EtherCAT[®] Slave Information) in die Software hochgeladen werden. Die ESI-Datei enthält alle notwendigen Konfigurationsdaten, um das Gerät in einem EtherCAT[®]-System zu betreiben, einschließlich der Kommunikations- und Netzwerkkonfiguration sowie aller verfügbaren Betriebsparameter mit ihren Datentypen.

Sie können eine ESI-Datei für Bronkhorst[®]-Geräte von den Produktseiten der Bronkhorst-Website herunterladen: <u>www.bronkhorst.com/products</u>

PROFINET

Sie können Geräte in einem PROFINET-System mit externer Software als Master-Gerät, wie TIA Portal (von Siemens) überwachen und betreiben.

Um ein Gerät zu konfigurieren, muss eine so genannte GSDML-Datei (General Station Description Markup Language) in die Software hochgeladen werden. Die GSDML-Datei enthält alle notwendigen Daten im XML-Format, um das Gerät in einem PROFINET-System zu betreiben, einschließlich der Kommunikations- und Netzwerkkonfiguration sowie aller verfügbaren Betriebsparameter mit ihren Datentypen.

Sie können eine GSDML-Datei für Bronkhorst[®]-Geräte von den Produktseiten der Bronkhorst-Website herunterladen: <u>www.bronkhorst.com/products</u>

3.7. Nullpunkt justieren

Nullpunktstabilität

Der Nullpunkt eines Bronkhorst[®]-Durchflussmessers/-reglers (das Messsignal, das einen fehlenden Durchfluss anzeigt) ist werksseitig auf etwa 20 °C und atmosphärischen Druck (Umgebungsbedingungen) justiert, während sich das Gerät in aufrechter Position befindet. Unter normalen Bedingungen (d.h. bei stabilen Prozessbedingungen) bleibt der Nullpunkt stabil. Im Laufe der Zeit können diverse Faktoren eine leichte Abweichung des Messwerts vom Nullpunkt verursachen, was einen automatischen Nullpunktabgleich erforderlich macht. Diese Abweichung kann durch Neujustieren des Nullpunkts beseitigt werden.

Bei der Umstellung auf ein anderes Medium wird für eine optimale Leistung des Geräts empfohlen, den Nullpunkt für jedes einzelne Medium neu zu justieren (1...8, sofern zutreffend).

Bitte vergewissern Sie sich, dass der Nullpunkt für das jeweilige Gas bei der korrekten Betriebstemperatur und den korrekten Druckbedingungen inklusive Einbaulage im Gerät eingestellt ist.

- Überprüfen Sie nach der Installation oder einem Standortwechsel immer den Nullpunkt
- Wenn das Gerät immer noch einen (dauerhaften) Durchfluss entdeckt, obwohl alle Ventile geschlossen sind und das Mediensystem dicht ist, empfiehlt es sich, den Nullpunkt zu justieren.

Voraussetzungen

Für den Nullpunktabgleich eines Geräts ist Folgendes erforderlich:

- Die Umgebungsbedingungen (Temperatur, Druck) müssen der Betriebsumgebung des Geräts entsprechen.
- Das Gerät wurde gemäß den üblichen Prozessbedingungen gleichmäßig mit den Betriebsmedien befüllt und unter Druck gesetzt.
- Das Gerät wurde hinreichend erwärmt.
- Es liegt kein Durchfluss im Gerät vor; dazu muss ein Ventil unmittelbar hinter dem Ausgang des Geräts geschlossen werden (Regelventil, Absperrventil).

Entscheidend ist es, den Durchfluss im Gerät zu sperren; ein Nullpunktabgleich, während immer noch ein Durchfluss vorhanden ist, führt zu Messfehlern.

Vorgang

Bronkhorst FlowSuite bietet eine schnelle und einfache Möglichkeit, den Nullpunkt bei einem Gerät zu justieren; mit der Autozero-Funktion wird das hier beschriebene Verfahren automatisch durchgeführt.

3.7.1. Verwendung des Multifunktionsschalters

Um den integrierten automatischen Nullpunktabgleich mit dem Multifunktionsschalter zu starten, befolgen Sie diese Anweisungen:

- Stellen Sie den Sollwert des Geräts auf 0 (null) ein
- Betätigen Sie den Multifunktionsschalter und halten Sie ihn gedrückt. Nach 4 Sekunden leuchtet die rote LED 4 Sekunden lang, anschließend leuchtet die grüne LED ●
- Lassen Sie den Schalter anschließend (nach 8 bis 12 Sekunden) los

Wenn die grüne LED nun schnell blinkt, bedeutet das, dass der automatische Nullpunktabgleich durchgeführt wird. Nach (erfolgreichem) Abschluss leuchtet die grüne LED dauerhaft und das Ausgangssignal liegt bei 0 % (Parametermesswert = 0).

3.7.2. Über digitale Kommunikation

Bronkhorst FlowSuite bietet eine einfache Möglichkeit, den Nullpunkt bei einem Gerät über RS232 zu justieren; mit der Autozero-Funktion wird das hier beschriebene Verfahren automatisch durchgeführt.

Um den Nullpunkt über digitale Kommunikation zu justieren, stellen Sie die Parameterwerte in der folgenden Reihenfolge ein (siehe Abschnitt <u>Digitale Parameter</u> für weitere Informationen über Geräteparameter):

Reihenfolge #	Parameter	Wert	Aktion
1	Setpoint	0	Durchfluss stoppen (Regelventil schließen)
2	Init Reset	64	Geschützte Parameter entsperren
3	Control Mode	9	Kalibriermodus aktivieren
4	Calibration Mode	0	Kalibriermodus zurücksetzen
5	Calibration Mode	9	Nullabgleich starten

Wenn die grüne LED nun schnell blinkt, bedeutet das, dass der Nullpunktabgleich durchgeführt wird. Nach dem Abschluss leuchtet die grüne LED dauerhaft und das Ausgangssignal liegt bei 0 % (Parametermesswert = 0). Gleichzeitig wird der Parameter Control Mode auf den Ausgangswert zurückgesetzt. Wurde der Vorgang erfolgreich abgeschlossen, wird der Parameter Calibration Mode auf den Wert 0 gesetzt (Ruhezustand). Schlägt der Vorgang fehl, wird der Parameter Calibration Mode auf den Wert 255 gesetzt.

Denken Sie daran, nach dem Vorgang den Parameter Init Reset auf den Wert 0 zurückzusetzen, um geschützte Parameter zu sperren.

4. Digitale Parameter

Jedes Gerät wird intern von einer Reihe digitaler Parameter gesteuert, die größtenteils nur über digitale Kommunikation zugänglich sind. Jedes Kommunikationsprotokoll nutzt eigene Verfahren für die Kommunikation mit Geräten und den Zugriff auf Parameter.

4.1. Allgemeines

In diesem Abschnitt werden die am häufigsten verwendeten Parameter für den digitalen Betrieb der **MASS-STREAM D-6400** Geräte beschrieben. Die Beschreibungen sind wie unten dargestellt nach Kategorien in Tabellen geordnet:

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
[type]	RW 🖉	[x][y]	[DDE par]	[Pro]/[Par]	[address]/[register]

In dieser Anleitung sind die Parameterbezeichnungen kursiv dargestellt (in Kursivtext – wie in diesem Tipp – in Normalschrift).

Тур

Unsigned char1 Byte vorzeichenlose Ganzzahl (0...255)Unsigned int2 Byte vorzeichenlose Ganzzahl, MSB first (0...65535)Unsigned long4 Byte vorzeichenlose Ganzzahl, MSB first (0...4294967295)Float4 Byte Gleitkomma, IEEE 32-Bit Single precision, MSB firstUnsigned char [x] x Byte Array (Textstring)

Unsigned char [x] x byte Array (Te)

Zugriff

- R Parameterwert kann ausgelesen werden
- W Parameterwert kann geschrieben werden
- Parameter ist geschützt und akzeptiert nur Werte, wenn Parameter Init Reset auf "unlocked" gesetzt wird

Bereich

Manche Parameter akzeptieren nur Werte innerhalb eines bestimmten Bereichs:

- [x] Mindestwert des Bereichs
- [y] Höchstwert des Bereichs

FlowDDE

Parameternummer in FlowDDE

FLOW-BUS

Im FLOW-BUS-Protokoll (ProPar, wenn RS232-Kommunikation verwendet wird) werden Parameter von einer individuellen Kombination aus Prozessnummer und Parameternummer gebildet:

[Pro] Prozessnummer

[Par] Parameternummer

Ausführliche Informationen finden Sie in der RS232-Anleitung (Dokumentnr. 9.17.027)

Modbus

Der Zugriff auf Parameter im Modbus-Protokoll erfolgt über die Spezifizierung ihrer individuellen Dezimal-Registernummer oder entsprechenden PDU-Adresse (Protocol Data Unit). Die PDU-Adresse ist die hexadezimale Umsetzung der Registernummer minus 1, z.B. entspricht Registernummer 1 der PDU-Adresse 0x0000, Registernummer 11 entspricht der PDU-Adresse 0x0000A:

[address] Hexadezimale PDU-Adresse [register] Dezimal-Registernummer

Modbus-Adressblöcke haben eine Größe von zwei Bytes. Größere Datentypen benötigen bis zu 8 zusammenhängende Adressblöcke, woraus sich eine maximale Variablenlänge von 16 Bytes ergibt. Werte, die über der maximalen Länge liegen, werden abgeschnitten.

Andere Schnittstellenprotokolle

Informationen über den Zugriff auf Parameter über Feldbus-Kommunikation finden Sie in der spezifischen Feldbus-Anleitung (siehe <u>Dokumentation</u>).

4.2. Spezielle Parameter

Init Reset

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	82/64	7	0/10	0x000A/11

Init Reset wird verwendet, um geschützte Parameter zum Schreiben zu entsperren (mit einem *P* Symbol markiert). Folgende Werte werden unterstützt.

Wert	Beschreibung
64	Entsperrte, geschützte Parameter können gelesen und überschrieben werden
82	Gesperrte, geschützte Parameter können nur gelesen werden

Beim Hochfahren ist Init Reset immer auf "Locked" gesetzt (Wert 82).

Reset

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	R	07	114	115/8	0x0E68/3689

Dieser Parameter dient zum Zurücksetzen von Programm, Zähler oder Alarmen.

Wert	Beschreibung
------	--------------

- 0 Kein Reset
- 1 Zähler zurücksetzen
- 2 Alarm zurücksetzen
- 3 Zähler zurücksetzen
- 4 Zähler zurücksetzen und deaktivieren
- 5 Firmware-Programm zurücksetzen (Soft Reset)
- 6 Alarm info Fehlerbit zurücksetzen
- 7 Alarm info Warnungsbit zurücksetzen

Der Reset-Parameter kann durch Reset Alarm Enable oder Reset Counter Enable deaktiviert werden. Vergewissern Sie sich, dass der Wert akzeptiert wird, indem Sie zuerst den Wert 0 senden.

Wink

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [27]	W	09*	1	0/0	0x0000/1

*) Modbus unterstützt nur Wert 14592

Wenn Sie einen Textstringwert zwischen 1 und 9 senden, sorgt dieser Parameter dafür, dass die Anzeige-LEDs (sofern vorhanden) für einige Sekunden blinken. Das kann hilfreich sein, um ein spezifisches Gerät in einem großen Feldbus-Netzwerk zu identifizieren. Control Mode

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	12	1/4	0x0024/37

Control Mode dient dazu, verschiedene Regelmodi des Geräts auszuwählen, und legt fest, von welchen Quellen das Gerät einen Sollwert akzeptiert. Folgende Regelmodi sind verfügbar:

Wert	Modus	Geräteaktion	Sollwertquelle
0	BUS/RS232	Regelt	Feldbus/RS232
1	Analog input	Regelt	Analog input
2	FLOW-BUS slave	Agiert als Slave-Gerät am FLOW-BUS	Nur RS485: FLOW-BUS Master output x <i>Slave</i> <i>Factor/100%</i>
3	Valve Close	Regler deaktiviert, Ventil geschlossen	
4	Controller Idle	Regler deaktiviert, Ventil in aktueller Position gesichert	
7	Setpoint 100%	Regelt, Sollwert fest bei 100 %	
8	Valve Fully Open	Regler deaktiviert, Ventil komplett geöffnet	
9	Calibration Mode	Kalibriermodus aktiviert (nur werksseitig)	
10	Analog Slave	Agiert als Slave eines anderen Geräts im Analogmodus	Analog Input x Slave Factor/100%
12	Setpoint 0%	Regelt, Sollwert fest bei 0 %	
13	FLOW-BUS analog slave	Agiert als Slave eines anderen Geräts am FLOW-BUS, Slave-Faktor wird durch analoges Eingangssignal vorgegeben	Nur RS485: FLOW-BUS Master-Output x <i>Analog</i> Input
18	RS232	Regelt, Safe State deaktiviert	Feldbus/RS232
20	Valve Steering	Regler deaktiviert, Sollwert umgeleitet zu Valve output	
21	Analog Valve steering	Regler deaktiviert, Analogeingabe umgeleitet zu Valve output	
22	Valve Safe State	Versetzt Gerät in den Safe State	

Unmittelbar nach dem Hochfahren wird der *Control Mode* abhängig von der (angeforderten) Standardeinstellung für analogen oder digitalen Betrieb automatisch auf "Analog input" oder "BUS/RS232" gesetzt. Wenn *Control mode* auf den Wert 0, 1, 9 oder 18 eingestellt ist, wird das Gerät beim nächsten Hochfahren oder Reset wieder in den Standard-Regelmodus versetzt. Andere Werte werden nach dem Hochfahren oder Reset beibehalten.

4.2.1. Standard-Regelmodus IO Status

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW 🖉	0255	86	114/11	0x0E4B/3660

Das Gerät ist so eingestellt, dass es Sollwerte aus analogen oder digitalen Quellen akzeptiert. Auch wenn diese Einstellung mit dem Parameter Control Mode geändert werden kann, kehrt das Gerät üblicherweise beim Hochfahren oder Reset immer wieder in den Standard-Regelmodus zurück. Der Standard-Regelmodus kann mit dem Parameter IO Status eingestellt werden; führen Sie die nachstehenden Vorgänge aus, um dies zu ändern.

Wechsel vom digitalen Betrieb in den analogen Betrieb:

- 1. Parameter Init Reset auf 64 setzen (entsperrt)
- 2. Parameter IO Status lesen
- 3. 64 zum gelesenen Wert hinzufügen
- 4. Neuen Wert unter Parameter *IO Status* schreiben
- 5. Parameter Init Reset auf 82 setzen (gesperrt)

Wechsel vom analogen Betrieb in den digitalen Betrieb:

- 1. Parameter Init Reset auf 64 setzen (entsperrt)
- 2. Parameter IO Status lesen
- 3. 64 zum gelesenen Wert abziehen
- 4. Neuen Wert unter Parameter *IO Status* schreiben
- 5. Parameter Init Reset auf 82 setzen (gesperrt)

Die vorstehend beschriebenen Vorgänge ändern den Wert des Parameters Control Mode nicht sofort. Um den neuen Standard-Regelmodus sofort anzuwenden, ändern Sie den Wert des Parameters Control Mode manuell, setzen Sie das Gerät zurück oder starten Sie es neu.

4.3. Messen und Regeln

Measure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	R	041942	8	1/0	0x0020/33

Dieser Parameter gibt den vom Gerät gemessenen Durchfluss wieder. Der Wert 32000 entspricht 100 %, die maximale Messwertausgabe beträgt 131,07 %, was 41942 entspricht.

Setpoint

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	RW	032767	9	1/1	0x0021/34

Dieser Parameter dient dazu, die benötigte Durchflussmenge für den Regler einzustellen. Im Sollwertbereich entspricht der Wert 32000 100 %.

Um Messung und Sollwert in tatsächliche Volumendurchflüsse umzuwandeln, verwenden Sie die Parameter Capacity und Capacity Unit (siehe <u>Medieneinstellung</u>)

Temperature

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	R	-250500	142	33/7	0xA1380xA139/4127341274

Dieser Parameter gibt die Innentemperatur im Gerätegehäuse in °C, was der tatsächlichen Medientemperatur entspricht.

Pressure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	143	33/8	0xA1400xA141/4128141282

Ist ein externer Drucksensor angeschlossen, gibt dieser Parameter den tatsächlichen Systemdruck auf bar (a). Gibt es keinen externen Drucksensor, ist der Standardwert dieses Parameters identisch mit dem Parameter *Inlet pressure*.

4.3.1. Erweitertes Messen und Regeln

Fmeasure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	R	-3.4E+38 3.4E+38	205	33/0	0xA1000xA101/4121741218

Gleitkommavariante von *Measure*. *Fmeasure* gibt den Messwert in der Capacity Unit an, die im Gerät eingestellt ist. Das Gerät nutzt die Parameter *Capacity, Capacity 0%, Capacity Unit und Sensor Type*, um *Fmeasure* zu berechnen.

Fsetpoint

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	206	33/3	0xA1190xA11A/4124141242

Gleitkommavariante von Setpoint. Fsetpoint gibt den Sollwert in der Capacity Unit an, die im Gerät eingestellt ist. Wie Fmeasure ist Fsetpoint von Capacity, Capacity 0%, Capacity Unit und Sensor Type abhängig. Setpoint Slope

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	RW	030000	10	1/2	0x0022/35

Der Wert dieses Parameters gibt die Zeit an, die benötigt würde, um den Sollwert zu justieren, wenn er von 0 auf 100 % geändert würde. Diese Funktion kann genutzt werden, um "nervöses" Reglerverhalten auszugleichen, z.B. um Sollwertsprünge nach oben oder unten zu reduzieren.

Der unterstützte Bereich entspricht 0...3000 Sekunden. Standardwert = 0

Beispiel:

Wenn *Setpoint Slope* = 100 ist, dauert es 10 Sekunden, um den Sollwert zu justieren, wenn er von 0 auf 100 % geändert wurde. Eine Sollwertänderung um 20 % dauert (20 %/100 %)*10 Sekunden = 2 Sekunden.

Analog Input

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	R	065535	11	1/3	0x0023/36

Dieser Parameter enthält eine digitale Umwandlung des analogen Eingangssignals (sofern vorhanden).

Valve Output

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned long	RW	016777215	55	114/1	0xF2080xF209/6196161962

Dieser Parameter gibt das Controller-Ausgangssignal für den Regelventilbetrieb wieder.

4.4. Geräteidentifikation

User Tag

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [16]	RW	-	115	113/6	0xF1300xF137/6174561752

Mit diesem Parameter kann dem Gerät ein individueller Tag-Name zugeordnet werden (maximal 16 Zeichen).

Customer Model

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [16]	RW	-	93	113/4	0xF1200xF127/6172961736

Dieser Parameter dient dazu, zusätzliche Informationen zur Modellnummerkennung hinzuzufügen, zum Beispiel eine kundenspezifische Modellnummer.

Serial Number

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [20]	R	-	92	113/3	0xF1180xF11F/6172161728

Seriennummer zur Identifizierung des Geräts.

BHT Model Number

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [35]	RW	-	91	113/2	0xF1100xF117/6171361720

Dieser Parameter zeigt den Modelltyp des Bronkhorst®-Geräts an.

Firmware Version

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [6]	R	-	105	113/5	0xF1280xF12A/6173761739

Versionsnummer der Firmware

Identification Number

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	175	113/12	0x0E2C/3629

Identifikationsnummer des (digitalen) Bronkhorst[®]-Gerätetyps.

Device Type

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [6]	R	-	90	113/1	0xF1080xF10A/6170561707

Zeichenfolge mit Informationen zum Gerätetyp: Dieser Parameter enthält eine Abkürzung, die sich auf die Identifikationsnummer bezieht.

4.5. Alarmmeldungen

Die Alarmeinstellungen lassen sich am einfachsten mit Bronkhorst FlowSuite oder einer Bronkhorst[®]-Anzeige- und Regeleinheit finden.

Die integrierte Alarmfunktion kann verwendet werden, um verschiedene Alarmtypen zu bearbeiten.

- Systemfehler und Warnungen
- Min/Max-Alarme
- Reaktionsalarme
- Batchalarme
- Master/Slave-Alarme

Der verwendete Alarmtyp kann mit dem Parameter *Alarm Mode* eingestellt werden. Ist ein Alarm aktiviert, kann der Typ mit dem Parameter *Alarm Info* ausgelesen werden. Eine automatische Sollwertänderung kann mit den Parametern *Alarm Setpoint Mode* and *Alarm New Setpoint* eingestellt werden. Außerdem kann mit dem Parameter *Alarm Delay Time* eine Alarmverzögerung eingestellt werden, um Überreaktionen auf geringfügige Störungen zu verhindern. Die Verfahren für einen Alarm-Reset können mit *Reset Alarm Enable* gesteuert werden.

Alarm Mode

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	03	118	97/3	0x0C23/3108

Verfügbare Modi:

Wert	Beschreibung
0	Alarm aus
1	Alarm für absolute Grenzwerte

2 Alarm für Grenzwerte in Bezug auf den Sollwert (Reaktionsalarm)

3 Alarm beim Hochfahren (z.B. nach dem Herunterfahren)

(Für DeviceNet[™]-Geräte sind nur die Modi 0 und 1 verfügbar).

Alarm Info

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	R	0255	28	1/20	0x0034/53

Dieser Parameter bietet Informationen zu den Ereignisarten, die einen Alarm auslösen. Der Wert ist eine bitweise Summierung der ausgegebenen Alarmtypen; wandeln Sie ihn in einen Binärwert um, um herauszufinden, welche Typen ausgegeben werden. Die folgenden Alarmtypen können ausgegeben werden:

Bit	Wert	Тур	Beschreibung
0	1	Error	Fehler-Flag ausgelöst
1	2	Warning	Warnungs-Flag ausgelöst
2	4	Minimum alarm	Measure < Alarm minimum limit
3	8	Maximum alarm	Measure > Alarm minimum limit
4	16	Batch counter alarm	Batch-Zähler hat Grenzwert erreicht
5	32	 Nur dieses Bit: Power-up alarm In Kombination mit Bit 2 oder 3: Response alarm 	Alarm eventuell durch einen Stromausfall verursacht Differenz zwischen <i>Measure</i> und <i>Setpoint</i> zu groß
6	64	Master/Slave alarm	Sollwert jenseits der Grenzwerte (verursacht durch <i>Slave factor</i>)
7	128	Hardware alarm	Hardware error

Alarm Delay Time

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	182	97/7	0x0C27/3112

Dieser Wert gibt die Zeit in Sekunden an, um welche die Alarmaktion nach Überschreiten des Grenzwertes verzögert wird. Dieser Wert verzögert auch die Aktion Alarm aus, wenn der Alarmgrenzwert nicht mehr überschritten wird. Standardwert = "0".

Alarm Maximum Limit

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	RW	032000	116	97/1	0x0C21/3106

Maximalgrenzwert für *Measure*, um den Maximumalarm auszulösen (nach *Alarm Delay Time*). Bereich 0...32000 gibt 0...100% Signal an. *Alarm Maximum Limit* muss größer sein als *Alarm Minimum Limit*. Standardwert: 0.

Alarm Minimum Limit

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	RW	032000	117	97/2	0x0C22/3107

Minimalgrenzwert für *Measure*, um den Minimumalarm auszulösen (nach *Alarm Delay Time*). Bereich 0...32000 gibt 0...100 % Signal an. *Alarm Minimum Limit* muss größer sein als *Alarm Maximum Limit*. Standardwert: 0.

Alarm Setpoint Mode

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	01	120	97/5	0x0C25/3110

Legt fest, ob der Sollwert geändert werden soll oder nicht, nachdem ein Alarm aktiviert wurde.

Wert Beschreibung

0 Keine Sollwertänderung (Standard)

1 Sollwert ändern zu Alarm new setpoint

Alarm New Setpoint

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	032000	121	97/6	0x0C26/3111

Neuer (sicherer) Sollwert während des Alarms bis zum Reset. Bereich 0...32000 gibt 0...100 % Sollwert an. Standardwert: 0

Reset Alarm Enable

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	015	156	97/9	0x0C29/3114

Verfügbare Reset-Verfahren für Alarme. Bis zu 4 verschiedene Verfahren lassen sich festlegen; wandeln Sie den Wert in einen Binärwert um, um herauszufinden, welche Verfahren aktiviert sind. Standardwert: 15 (alle Bits/Verfahren aktiviert)

Folgende Verfahren werden unterstützt:

Bit	Wert	Beschreibung
0	1	Multifunktionsschalter
1	2	Extern (veraltet)
2	4	Durch Parameter <i>Reset</i>
3	8	Automatisch (wenn Alarmbedingungen nicht mehr gelten)

4.6. Zähler

Die Zählereinstellungen lassen sich am einfachsten mit Bronkhorst FlowSuite oder einer Bronkhorst[®]-Anzeige- und Regeleinheit finden.

Counter Mode

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	02	130	104/8	0x0D08/3337

Verfügbare Modi:

Wert	Beschreibung

0 Zähler aus (Standard)

1 Zähler dauerhaft ein

2 Zählt, bis Grenzwert erreicht ist (eingestellt über Counter Limit)

Counter Unit

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [4]	RW	Siehe nachstehende Tabelle	128	104/7	0xE8380xE839/5944959450

Dieser Parameter enthält die Bezeichnung der Zähler-Ausleseeinheit. *Counter Unit* unterstützt die folgenden Werte:

Masse	Normales Volumen (1,01325 bar(a), 0 °C)	Standardvolumen (1,01325 bar(a), 20 °C)	Individuelles Volumen (Capacity Unit Pressure, Capacity Unit Type Temperature)
ug, mg, g, kg	uln, mln, ln,	uls, mls, ls,	ul, ml, l,
	mm3n, cm3n, dm3n, m3n	mm3s, cm3s, dm3s, m3s	mm3, cm3, dm3, m3

Parameter 170 (Dichte) dient dazu, den Custom volume flow zu berechnen.

Counter Value

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	010000000	122	104/1	0xE8080xE809/5940159402

Aktueller Zählerwert in Einheiten, die mit dem Parameter Counter Unit ausgewählt wurden.

Counter Limit

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	09999999	124	104/3	0xE8180xE819/5941759418

Zählergrenzwert/Batchgröße in Einheiten, die mit dem Parameter *Counter Unit* ausgewählt wurden. Standardwert: 0

Counter Setpoint Mode

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	01	126	104/5	0x0D05/3334

Legt fest, ob der Sollwert nach dem Erreichen des Counter Limit geändert wird oder nicht.

Wert	Beschreibung
0	Keine Sollwertänderung (Standard)
4	Cally and Burdawa my Countar navy actor

1 Sollwert ändern zu Counter new setpoint

Counter New Setpoint

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned int	RW	032000	127	104/6	0x0D06/3335

Neuer (sicherer) Sollwert bis zum Reset, wenn ein Counter Limit erreicht wird. Bereich 0...32000 gibt 0...100 % Sollwert an.

Standardwert: 0

Reset Counter Enable

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	015	157	104/9	0x0D09/3338

Verfügbare Reset-Verfahren für Zähler. Bis zu 3 verschiedene Verfahren können festgelegt werden. Der Wert ist eine bitweise Zusammenfassung der aktivierten Reset-Verfahren; wandeln Sie den Wert in einen Binärwert um, um zu ermitteln, welche Verfahren aktiviert sind. Standardwert: 7 (Bits/Verfahren 0, 1 und 2 aktiviert)

Folgende Verfahren werden unterstützt:

Bit	Wert	Beschreibung
0	1	Multifunktionsschalter
1	2	Extern
2	4	Durch Parameter <i>Reset</i>
3	8	Automatisch (z.B. beim Zurücksetzen des Counter Value)

4.7. Netzwerkkonfiguration

Änderungen an den Netzwerkeinstellungen werden beim Zurücksetzen auf Werkseinstellungen **nicht** zurückgesetzt.

Standardeinstellungen

Die Netzwerkkonfiguration erfolgt werksseitig wie auf dem Typenschild oder in den technischen Spezifikationen angegeben. In der nachstehenden Tabelle sind die unterstützten Konfigurationen für die verfügbaren Schnittstellenprotokolle enthalten (Standardeinstellungen sind fettgedruckt):

Protokoll	ProPar (RS232)	FLOW-BUS (RS485)	Modbus (RTU/ASCII)	PROFIBUS DP	DeviceNet™
Adresse	3	3 125	1 247	0 126	0 63
Baudrate	9600 19200 38400 57600 115200 230400 460800	187500 400000	9600 19200 38400 56000 115200 128000 256000	(autodetect) 9600 19200 45450 93750 187500 500000 1500000 3000000 6000000 12000000	125000 250000 500000
Parität	0	0	0, 1, 2	2	0

Die Netzwerkkonfiguration für EtherCAT[®] und PROFINET erfolgt automatisch über das Ethernet-Protokoll.

Kommunikation über Feldbus-Anschluss (RS485)

Verwenden Sie die folgenden Parameter, um das Gerät für die Kommunikation über den Feldbus-Anschluss zu konfigurieren:

Fieldbus 1 Address

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	199	125/10	0x0FAA/4011

Fieldbus 1 Baud Rate

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned long	RW	01.0E10	201	125/9	0xFD480xFD49/6484164842

Fieldbus 1 Parity

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	02	335	125/12	0x0FAC/4013

Folgende Werte werden unterstützt:

Wert	Beschreibung				
0	Keine Parität				
	I In a such a Deniti				

1 Ungerade Parität

2 Gerade Parität

Fieldbus 1 Selection

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	305	125/8	0x0FA8/4009

Kommunikation über den Stromanschluss (RS232/RS485)

Verwenden Sie die folgenden Parameter, um das Gerät für die Kommunikation über den 8DIN-(Strom-)Anschluss zu konfigurieren:

- Wenn der 8DIN-Anschluss für die RS485-Kommunikation eingerichtet ist, reagiert das Gerät nicht, wenn es an eine RS232-Konfiguration angeschlossen wird. Nutzen Sie in diesem Fall die Neustartfunktion des Multifunktionsschalters, um in den Konfigurationsmodus zu wechseln und RS232-Kommunikation zu aktivieren.
 - Nutzen Sie nach der Konfiguration der erforderlichen Parameter dasselbe Verfahren, um den Konfigurationsmodus zu verlassen und die ursprünglichen Kommunikationseinstellungen wiederherzustellen (ansonsten bleibt der Konfigurationsmodus nach dem Herunterfahren aktiviert).

Field Bus 2 Address

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	309	124/10	0x0F8A/3979

Field Bus 2 Baud Rate

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned long	RW	01.0E10	310	124/9	0xFC480xFC49/6458564586

Field Bus 2 Parity

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW₽	02	336	124/12	0x0F8C/3981

Folgende Werte werden unterstützt:

Wert Beschreibung

0 Keine Parität

1 Ungerade Parität

2 Gerade Parität

Fieldbus 2 Selection

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0255	308	124/8	0x0F88/3977

4.8. Medieneinstellung

Um das Medium, den Durchflussbereich oder die Betriebsbedingungen zu ändern, wird dringend empfohlen, das Bronkhorst FlowSuite Software-Tool zu verwenden. Werden die in diesem Abschnitt beschriebenen Parameter manuell geändert, findet keine Überprüfung statt, und bei der Ausgabe des Geräts können Unregelmäßigkeiten auftreten. Außerdem besteht die Gefahr, dass das Gerät beschädigt wird, wenn es unter Bedingungen verwendet wird, für die das Gerät nicht geeignet ist. Wenden Sie sich im Zweifelsfall an Ihren Bronkhorst-Vertreter.

Fluid Set Index

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	07	24	1/16	0x0030/49

Mit diesem Parameter können alle voreingestellten Medien (bis zu 8) ausgewählt werden. Jedes Medium hat spezifische (konfigurierbare) Merkmale wie *Fluid Name, Capacity* usw. Standardwert: 0 (Medium 1).

Bitte beachten Sie, dass der gewählte Wert der Mediennummer minus 1 entspricht (Wert 0 entspricht Medium 1, Wert 1 Medium 2 usw.).

Fluid Name

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [10]	RW	-	25	1/17	0x81880x818C/3316133165

Dieser Parameter enthält die Bezeichnung der aktuellen Medien.

Capacity

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW₽	1E-10… 1E+10	21	1/13	0x81680x8169/3312933130

Dieser Parameter legt den maximalen Auslese-/Regelwert (100 %) der aktuellen Medien in Ausleseeinheiten fest, die der *Capacity Unit* entsprechen.

Capacity Unit

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char [7]	RW	siehe unten	129	1/31	0x81F80x81FB/3327333276

Verfügbare Einheiten:

Normales Volumen	Standardvolumen	Individuelles Volumen
(1,01325 bar(a), 0 °C)	(1,01325 bar(a), 20 °C)	(Capacity Unit Pressure,
		Capacity Unit Type
		Temperature)
uln/h, uln/min, uln/s, mln/h, ln/min,	uls/h, uls/min, uls/s, mls/h,	ul/h, ul/min, ul/s, ml/h, ml/min,
mln/s, ln/h, ln/min, ln/s,	mls/min, mls/s, ls/h, ls/min,	ml/s, l/h, l/min, l/s, cc/h,
ccn/h, ccn/min, ccn/s, mm3n/h,	ls/s, ccs/h, ccs/min, ccs/s,	cc/min, cc/s, mm3/h, mm3/m,
mm3n/m, mm3n/s, cm3n/h,	mm3s/h, mm3s/m, mm3s/s,	mm3/s,
cm3n/m, cm3n/s, m3n/h, m3n/min,	cm3s/h, cm3s/m, cm3s/s,	cm3/h, cm3/m, cm3/s, m3/h,
m3n/s, scfh, scfm, scfs, sccm, slm	m3s/h, m3s/min, m3s/s	m3/min, m3/s, cfh, cfm, cfs
	Normales Volumen (1,01325 bar(a), 0 °C) uln/h, uln/min, uln/s, mln/h, ln/min, mln/s, ln/h, ln/min, ln/s, ccn/h, ccn/min, ccn/s, mm3n/h, mm3n/m, mm3n/s, cm3n/h, cm3n/m, cm3n/s, m3n/h, m3n/min, m3n/s, scfh, scfm, scfs, sccm, slm	Normales Volumen (1,01325 bar(a), 0 °C)Standardvolumen (1,01325 bar(a), 20 °C)uln/h, uln/min, uln/s, mln/h, ln/min, mln/s, ln/h, ln/min, ln/s, ccn/h, ccn/min, ccn/s, mm3n/h, mm3n/m, mm3n/s, cm3n/h, cm3n/m, cm3n/s, scfh, scfm, scfs, sccm, slmuls/h, uls/min, uls/s, mls/h, mls/min, mls/s, ls/h, ls/min, ls/s, ccs/h, ccs/min, ccs/s, mm3s/h, mm3s/h, mm3s/m, mm3s/s, cm3s/h, cm3s/m, m3s/s,

Da die maximale Stringlänge 7 Zeichen beträgt, sind manche Einheitenbezeichnungen abgekürzt. mm3n/m bedeutet beispielsweise mm3n/min.

Parameter 170 (Dichte) dient dazu, den Custom volume flow zu berechnen.

Capacity Unit Type Temperatur

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW⊉	-273.15 3.4E+38	245	33/10	0xA1500xA151/4129741298

Dieser Parameter gibt eine Referenztemperatur für die Umwandlung des gemessenen Massendurchflusses in einen Volumendurchfluss vor. Siehe auch Parameter *Capacity Unit* und *Counter Unit*.

Capacity Unit Type Pressure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW₽	03.4E+38	246	33/11	0xA1580xA159/4130541306

Dieser Parameter gibt einen Referenzdruck für die Umwandlung des gemessenen Massendurchflusses in einen Volumendurchfluss vor. Siehe auch Parameter Capacity Unit und Counter Unit.

4.8.1. Erweiterte Parameter für Medieneinstellung

Bitte beachten Sie, dass die in diesem Abschnitt beschriebenen Parameter keine Messwerte enthalten, sondern <u>nur feste Referenzwerte</u>, die für Kapazitätsberechnungen usw. verwendet werden können.

Inlet Pressure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW⊉	03.4E+38	178	113/13	0xF1680xF169/6180161802

Vordruck der aktuellen Medien in bar(a).

Outlet Pressure

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	179	113/14	0xF1700xF171/6180961810

Nachdruck der aktuellen Medien in bar(a).

Fluid Temperature

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	-250500	181	113/16	0xF1800xF181/6182561826

Temperatur der aktuellen Medien in °C.

Density

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	170	33/21	0xA1A80xA1A9/4138541386

Dichte der aktuellen Medien in kg/m³.

Heat Capacity

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	250	113/18	0xF1900xF191/6184161842

Wärmekapazität der aktuellen Medien in J/kg·K.

Thermal Conductivity

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	251	113/20	0xF1A00xF1A1/6185761858

Thermische Leitfähigkeit der aktuellen Medien in W/m·K.

Viskosität

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Float	RW	03.4E+38	252	113/21	0xF1A80xF1A9/6186561866

Dynamische Viskosität der aktuellen Medien in Pa·s.

4.9. Master/Slave-Konfiguration (FLOW-BUS)

Normalerweise findet in einem Feldbus-System keine Kommunikation zwischen Slave-Geräten statt. Allerdings bietet das FLOW-BUS-Protokoll eine Funktion, um eine Master/Slave-Beziehung zwischen zwei Geräten aufzubauen. Das typische Verhalten eines Slave-Geräts besteht darin, automatisch einen eigenen Sollwert festzulegen, der relativ zum Ausgangssignal (Messwert) des Masters steht.

Das Ausgangssignal eines Geräts, das an ein FLOW-BUS-Netzwerk angeschlossen ist, ist ohne zusätzliche Verkabelung automatisch für alle anderen Geräte verfügbar. Ein Slave-Gerät kann seinerseits als Master für andere Geräte dienen.

Um eine Master/Slave-Beziehung zwischen Geräten einzurichten, müssen Sie zuerst festlegen, welches Gerät Master und welches Slave sein soll und anschließend den Control Mode des Slave-Geräts auf "FLOW-BUS Slave" (Wert 2) oder "FLOW-BUS Analog Slave" (Wert 13) festlegen, je nachdem wie der Sollwert berechnet werden soll (siehe Parameter <u>Control Mode</u>).

Das Slave-Gerät erfasst regelmäßig das Ausgangssignal des Masters und nutzt den Slave-Faktor, um einen eigenen Durchfluss festzulegen, der relativ zum Durchfluss des Master-Geräts steht.

Sollwerte von Master-Geräte können nur über den FLOW-BUS empfangen werden.

_

Um Schäden an den Geräten und/oder dem System bzw. den Systemen, an die sie angeschlossen sind, zu verhindern, sind Zirkelverweise zwischen Geräten am selben Feldbus zu vermeiden. Das FLOW-BUS-System hat keinen Schutzmechanismus.

Master Node

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0128	158	33/14	n. z.

Den Master-Knoten für das Gerät einstellen.

Bitte beachten Sie, dass dieser Parameter nur in einem FLOW-BUS-System über RS485 wirksam ist.

Slave Factor

Тур	Zugriff	Bereich	FlowDDE	ProPar	Modbus
Unsigned char	RW	0500	139	33/1	0xA1080xA109/4122541226

Das Ausgangssignal des Reglers des Master-Geräts wird mit *Slave Factor/100%* multipliziert, um den Sollwert des Slave-Geräts zu ermitteln.

In anderen Systemen als FLOW-BUS über RS485 ist *Slave Factor* nur wirksam, wenn *Control Mode* auf "Analog Slave" eingestellt ist und das analoge Ausgangssignal des Master-Geräts zum Eingang des Slave-Geräts zurückgeleitet wird. Beispiel:

- Master-Ausgang= 80 %
- Slave Factor = 50
- \rightarrow Sollwert Slave-Gerät = 80 % x 50 %/100 % = 40 %

4.10. Individuelle I/O-Optionen (Pin 5)

MASS-STREAM D-6400 Geräte bieten diverse individuelle Eingangs-/Ausgangsfunktionen (I/O) über den 8DIN-Anschluss, die optional genutzt werden können. I/O-Optionen werden wie vom Kunden bei der Bestellung gewünscht, werksseitig installiert und können nach Auflieferung nicht mehr manuell geändert werden.

Die letzten drei Zeichen des Modellschlüssels auf dem Typenschild geben an, welche I/O-Konfiguration installiert ist (siehe Abschnitt <u>Modellschlüssel</u>). Die möglichen Konfigurationen sind in der nachstehenden Tabelle beschrieben. Im Anschlussdiagramm für optionale Bus- und I/O-Konfigurationen (Dokument 9.16.266) sind die Codes erläutert.

Code	Beschreibung			
000	Deaktiviert, Pin 5 wurde auf 0 VDC gesetzt (Standardauswahl)			
A1V	0…10 VDC aktives Ausgangssignal, Regler Analoges Signal für Pumpen- oder externe Ventilsteuerung (nur Regelsignal).			
	Wenn das Ausgangssignal für die Pumpen- oder externe Ventilsteuerung (nur bei Massendurchflussmessern mit aktivierter Reglerfunktion) verwendet wird, muss der Parameter <i>Valve</i> <i>maximum</i> auf 0,3 [A] eingestellt werden. Bei Massendurchflussreglern stellt das Ausgangssignal den Ventilantriebstrom dar. Dieses Ausgangssignal ist aufgrund maximalen Ventilstrombegrenzung auf einen Wert unter 10 VDC beschränkt.			
B1V	4…20 mA aktives Ausgangssignal, Regler Analoges Signal für Pumpen- oder externe Ventilsteuerung (nur Regelsignal).			
	Wenn das Ausgangssignal für die Pumpen- oder externe Ventilsteuerung (nur bei Massendurchflussmessern mit aktivierter Reglerfunktion) verwendet wird, muss der Parameter <i>Valve</i> <i>maximum</i> auf 0,3 [A] eingestellt werden. Bei Massendurchflussreglern stellt das Ausgangssignal den Ventilantriebstrom dar. Dieses Ausgangssignal ist aufgrund der maximalen Ventilstrombegrenzung auf einen Wert unter 20 mA beschränkt.			
B2V	3,8…20,8 mA aktives Ausgangssignal, Regler Analoges Signal für Badger Meter-Ventil mit TEIP11-Signalwandler (nur Regelsignal)			
C3A	Digitaler Ausgang, Min/Max-Alarm Während eines Min/Max-Alarms wird Pin 5 auf 0 VDC reduziert.			
C4A	Digitaler Ausgang, Zähleralarm Während eines Zähleralarms wird Pin 5 auf 0 VDC reduziert.			
C5S	Digitaler Ausgang, aktiviert durch Sollwert (für Absperrregelung) Pin 5 wird bei einem Reglersollwert auf 0 VDC reduziert, z.B. zur Aktivierung eines Absperrventils.			
	Für werksseitig eingestellte analoge Regelung (A#-C5S): Wenn der Parameter <i>Control mode</i> werksseitig für die analoge Regelung eingestellt ist, beträgt der Mindestsollwert, bei dem das mit Pin 5 verbundene Gerät (Absperrventil) aktiviert wird, 1,9 %. Das			

	verhindert, dass eventuell auftretende Geräusche am Analogeingang das Gerät versehentlich aktivieren.
	Für werksseitig eingestellte digitale Regelung (D#-C5S): Wenn der Parameter <i>Control mode</i> werksseitig für die digitale Regelung eingestellt ist, entspricht der Grenzsollwert, bei dem das mit Pin 5 verbundene Gerät aktiviert wird, jedem Wert > 0.
	Hinweis: Wenn das Gerät in den <u>Valve Safe State</u> versetzt wird, ist der Digitalausgang nicht betroffen; daher wird ein (n/c) Absperrventil, das mit Pin 5 verbunden ist, nicht geschlossen, wenn der (n/c) Regler im "Valve Safe State" ist
C0I	Digitaler Ausgang, High/Low-Schaltung über Remote-Parameter (z.B. zur Regelung eines Absperrventils) Pin 5 wird auf 0 VDC reduziert, wenn der Wert "1" in den Parameter <i>IO switch status</i> geschrieben wird; dies wird durch Schreiben des Wertes "0" aufgehoben. Ein mit Pin 5 verbundenes Gerät (z.B. ein Absperrventil) kann durch Schreiben des Parameters <i>IO switch status</i> aktiviert/deaktiviert werden.
	Hinweis: Wenn das Gerät in den <u>Valve Safe State</u> versetzt wird, ist der Digitalausgang auch betroffen; daher wird ein (n/c) Absperrventil, das mit Pin 5 verbunden ist, geschlossen, wenn der (n/c) Regler im "Valve Safe State" ist.
D9E	Digitaler Frequenzausgang, Messung Der Messwert wird in eine Frequenz innerhalb eines bestimmten Frequenzbereichs umgewandelt.
	Der Standardfrequenzbereich für 0100 % Durchfluss ist 010000 Hz. Alle anderen Frequenzbereiche müssen bei der Bestellung angegeben werden.
F9B	Digitaler Impulsausgang, Batch-Zähler Pin 5 wird auf 0 VDC reduziert, wenn eine bestimmte Batch-Größe erreicht wird (während einer bestimmten Impulsdauer).
	Standardmäßig wird jeweils ein Impuls zum einfachen <i>Counter unit</i> Batchwert ausgegeben; die Impulslänge beträgt 1 Sekunde. Wenn <i>Counter unit</i> auf "In" eingestellt ist, wird jedes Mal ein Impuls ausgegeben, wenn 1 In das Gerät passiert hat. Eine andere Impulslänge muss bei der Bestellung angegeben werden.
	Ein Pull-up-Widerstand von 510 kOhm ist nötig, um 1524 VDC an Pin 5 zu generieren (laut geltendem Anschlussdiagramm).
H1P	420 mA Eingang, externer Drucksensor für aktive Druckkorrektur. Signal wird in Parameter <i>Pressure</i> umgewandelt.
I3C	Digitaler Eingang, Reglermodus Ventil schließen Das Ventil schließt sich, wenn Pin 5 an 0 VDC angeschlossen wird.
	Diese Option wechselt zwischen dem Standard <i>Control mode</i> und dem Modus "Valve Close" (Wert 3). Wenn der Standard <i>Control mode</i> digital ist, ist der Standardwert 0 (Bus/RS232); wenn der Standard <i>Control mode</i> analog ist, ist der Standardwert 1 (Analog input).
18C	Digitaler Eingang, Reglermodus Ventil spülen Das Ventil wird voll geöffnet, wenn Pin 5 an 0 VDC angeschlossen wird.
	Diese Option wechselt zwischen dem Standard <i>Control mode</i> und dem Modus "Valve Fully Open" (Wert 8). Wenn der Standard <i>Control mode</i> digital ist, ist der Standardwert 0 (Bus/RS232); wenn der Standard <i>Control mode</i> analog ist, ist der Standardwert 1 (Analoger Eingang).
I1R	Digitaler Eingang, Zähler zurücksetzen Der Zähler wird zurückgesetzt, wenn Pin 5 an 0 VDC angeschlossen wird.
I2R	Digitaler Eingang, Alarm zurücksetzen Der Alarm wird zurückgesetzt, wenn Pin 5 an 0 VDC angeschlossen wird.

5. Problembehandlung

Um Probleme im Mediensystem zu ermitteln, wird empfohlen, die Einheit aus der Prozesslinie zu nehmen und sie zu überprüfen, wenn kein Mediendruck vorhanden ist. Schmutz oder Verstopfungen lassen sich schnell ermitteln, wenn Sie die Medienanschlüsse lösen und eine Sichtprüfung vornehmen.

Elektronikfehler lassen sich durch Unterbrechen und Wiederherstellen der Spannungsversorgung des Geräts feststellen. Nach der Wiederherstellung der Spannungsversorgung können Sie das Regelverhalten überprüfen, indem Sie Mediendruck aufbauen.

Bei Verdacht auf Undichtigkeiten dürfen Sie das Gerät nicht demontieren. Kontaktieren Sie stattdessen Ihren Bronkhorst-Vertreter, um das Gerät warten oder reparieren zu lassen.

5.1. Fehler und Warnungen

- Während des Betriebs können die LEDs Fehler und/oder Warnungen anzeigen. Siehe <u>LED-</u> <u>Anzeigen</u> für eine Erläuterung der LED-Anzeigen, die das Gerät ausgeben kann.
- Informationen zu Fehlern und Warnungen erhalten Sie wenn Sie das Gerät an Bronkhorst FlowSuite anschließen.

5.2. Wiederherstellen der Werkseinstellungen

Falls Änderungen an der Konfiguration des Geräts zu nicht behebbarem Fehlerverhalten führen, können Sie das Gerät auf die voreingestellten Werkseinstellungen zurücksetzen. Am einfachsten ist es, dazu den Multifunktionsschalter an der Oberseite des Geräts zu verwenden.

Befolgen Sie diese Anweisungen, um die Werkseinstellungen mit dem Multifunktionsschalter wiederherzustellen:

- 1. Überprüfen Sie, ob die Stromversorgung des Geräts abgeschaltet ist
- 2. Betätigen Sie den Multifunktionsschalter und halten Sie ihn gedrückt, während das Gerät hochgefahren wird.

Nach 4 Sekunden beginnt die rote LED ● zu blinken (0,2 Sekunden an, 0,2 Sekunden aus)

3. Lassen Sie den Schalter anschließend (nach 4 bis 8 Sekunden) los

Änderungen an den Netzwerkeinstellungen (Busadresse, Baudrate, Parität) werden beim Zurücksetzen auf die Werkseinstellungen **nicht** zurückgesetzt.

Alternativ können die Werkseinstellungen in Bronkhorst FlowSuite (über RS232-Kommunikation) oder mit einer Anzeige- und Regeleinheit von Bronkhorst[®] (BRIGHT, E-8000) wiederhergestellt werden.

Falls die RS232-Kommunikation mit dem Gerät nicht hergestellt werden kann, nutzen Sie die Neustartfunktion des <u>Multifunktionsschalters</u>, um in den Konfigurationsmodus zu wechseln und RS232-Kommunikation zu aktivieren.

Denken Sie daran, nach der Wiederherstellung der Werkseinstellungen den Konfigurationsmodus zu verlassen und die ursprünglichen Kommunikationseinstellungen wiederherzustellen (ansonsten bleibt der Konfigurationsmodus nach dem Herunterfahren aktiviert).

5.3. Häufige Probleme

Symptom	Mögliche Ursache	Maßnahme	
Keine (Feldbus-)Kommunikation	Keine Stromversorgung	Stromversorgung überprüfen	
		Kabelverbindung prüfen	
		Kabelanschluss prüfen	
	Ungültige Knotenadresse	Knotenadresse ändern	
		(siehe Netzwerkkonfiguration)	
	Sonstiges	Reset des Geräts und/oder Neustart des	
		Masters. Kontaktieren Sie Bronkhorst, wenn	
Koin Augangssignal	Koino Stromyorsorgung		
Rein Ausgangssignal	Reine Stionwersorgung	Stroniversorgung uperpruten Kabolvorbindung prüfen	
		Kabelanschluss prüfen	
	Ungültiger Regelmodus (Gerät	Regelmodus überprüfen	
	akzeptiert keinen Sollwert)	(siehe Spezielle Parameter)	
	Kein Sollwert eingestellt oder	Sollwert ≥ 2 % vorgeben	
	Sollwert zu niedrig		
	Ventil im Safe State prüfen	Prüfen, ob Regelventil im Safe State ist;	
	(normal geschlossen)	Ursache gegebenenfalls beseitigen (siehe	
		Valve Safe State)	
	Vordruck oder Differenzdruck	Vordruck erhöhen	
	Zu niedrig	Couloge frieghe Luft durch	
	Regelventil verstooft oder	Saubere, Insche Luit durch Mediensystem leiten Kontaktieren Sie	
	blockiert	Bronkhorst wenn das Problem	
		weiterhin besteht.	
		Bei externen, proportionalen	
		Regelventilen: Ventil mit 015 VDC	
		und operativem Vordruck versorgen	
		und Spannung allmählich erhöhen.	
		Wenn sich das Ventil nicht öffnet, Teile	
	Capacifabler	reinigen und Ventil neu justieren	
	Durchfluss zu boch Ventil	Ventil schließen	
	komplett geöffnet		
Maximales Ausgangssignal (131	PCB/Sensorfehler	Gerät an den Hersteller zurücksenden	
%)	Ventil in "Safe State" (normal	Ursache für "Valve Safe State" beseitigen	
,	offene Ventile)	(siehe Valve Safe State)	
	Messung gestört durch	Vermeiden Sie nach Möglichkeit eine	
	Schwingungen	Installation in unmittelbarer Nähe zu	
		mechanischen Schwingungen	
Regelverhalten instabil	Vordruck instabil	Installieren Sie einen Druckregler oder	
		don Pogolgoräton (sieho Abschnitt	
		Anforderungen an Leitungen)	
	Vor- und/oder Nachdruck zu	Justieren Sie den Druck und/oder stellen	
	hoch oder zu niedrig	Sie den Gerätedruck gemäß dem	
	5	tatsächlichen Prozessdruck ein	
	Falsches Prozessgas	Wählen Sie das korrekte Prozessgas	
	Ealsche Reglereinstellungen	lustieren Sie die Einstellungen	
	Regelventil beschädigt	Gerät an den Hersteller zurücksenden	
	Keine Medienversorgung	Prüfen Sie Fingangskomponenten auf	
		Hindernisse, z.B.:	
		Medienleitungen	
		Ventile	
		Filter	
Kein Durchfluss (Senden eines	Sollwert zu niedrig	Sollwert ≥ 2 % vorgeben	
Sollwerts wirkungslos)	Vordruck oder Differenzdruck	Vordruck auf Wert innerhalb der	
	Druckgrenzwert überschritten	Spezifikationen einstellen	

Symptom	Mögliche Ursache	Maßnahme
Messwert steigt, aber erreicht Sollwert nicht	Leitungen, Filter und/oder Regelventil verstopft oder blockiert	 Saubere, frische Luft durch Mediensystem leiten Kontaktieren Sie Bronkhorst, wenn das Problem weiterhin besteht. Bei externen, proportionalen Regelventilen: Ventil mit 015 VDC und operativem Vordruck versorgen und Spannung allmählich erhöhen. Wenn sich das Ventil nicht öffnet, Teile reinigen und Ventil neu justieren
	Vordruck zu niedrig	Vordruck erhöhen
	Nachdruck zu hoch	Nachdruck prüfen/senken
	Prozessausgang blockiert	Prüfen Sie den Prozessausgang und die Ausgangsleitungen
Messwert oder Ausgangssignal (wesentlich) niedriger als Sollwert	Vordruck oder Differenzdruck zu niedrig	 Vordruck erhöhen Verwenden Sie das Gerät unter den zulässigen Bedingungen
	Prozessgaskondensation	Senken Sie den Vordruck oder erhöhen Sie die Gastemperatur
	 Leitungen, Filter und/oder Regelventil verstopft oder blockiert Sensor verstopft oder kontaminiert 	Saubere, frische Luft durch Mediensystem leiten Kontaktieren Sie Bronkhorst, wenn das Problem weiterhin besteht.
	Der zugeführte Medientyp entspricht nicht dem voreingestellten Medientyp	Stellen Sie ein Gerät mit einem anderen Medium bereit oder ändern Sie den Medientyp in der Gerätekonfiguration
Messwert oder Ausgangssignal zeigt einen Durchfluss an, obwohl es keinen Durchfluss gibt.	Montagelage und/oder Umgebungsbedingungen haben sich wesentlich geändert	 Verwenden Sie das Gerät unter den zulässigen Bedingungen Justieren Sie den Nullpunkt (siehe <u>Nullpunkt justieren</u>)
	System undicht	Überprüfen Sie das System auf undichte Stellen. Befolgen Sie Anweisungen des Verkäufers bei der Installation externer Komponenten (z.B. Adapter, Leitungen, Ventile)
Dauerhaft Höchstwert oder	Vordruck zu hoch	Prüfen Sie den Vordruck
Ausgangssignal gemessen	Ventil komplett geöffnet	 Ventil schließen Prüfen Sie, ob sich das Regelventil im Safe State (normal offene Ventile) befindet; beseitigen Sie gegebenfalls die Ursache (siehe <u>Valve Safe State</u>)

6. Kontakt- und Service-Informationen

Aktuelle Informationen über Bronkhorst® und Serviceadressen finden Sie auf unserer Website:

www.bronkhorst.com

Haben Sie Fragen zu unseren Produkten? Unsere Verkaufsabteilung hilft Ihnen gerne, das richtige Produkt für Ihre Anwendung auszuwählen. Wenden Sie sich per E-Mail an den Verkauf:

sales.bhi@bronkhorst.com

Für Kundendienstfragen steht unsere Serviceabteilung mit Hilfe und Beratung zur Verfügung. Kontaktieren Sie den Service per E-Mail:

aftersales@bronkhorst.com

Ungeachtet der Zeitzone stehen unsere Experten im Betreuungsbereich Ihnen zur Verfügung, um Ihre Fragen umgehend zu beantworten oder für geeignete weitere Maßnahmen zu sorgen. Unsere Experten sind erreichbar unter:

1	q	7
\langle	đ	J

+31 859 02 18 66

Bronkhorst Instruments GmbH Am Ziegelwerk 1 85391 Leonardsbuch Deutschland

6.1. Rücksendungen

Falls das Produkt zurückgeschickt werden muss (z. B. zur Kalibrierung, Instandsetzung), finden Sie auf unserer Website Informationen zum Online-Rückgabeverfahren (RMA): <u>https://www.bronkhorst.com/service-support</u>

6.2. Entsorgung (Ende der Lebensdauer)

In der Europäischen Union sind Hersteller von elektrischen und elektronischen Geräten (EEG) zur Einhaltung der EEAG-Richtlinie (elektrische und elektronische Altgeräte) verpflichtet. Bronkhorst[®] bietet Kunden die Möglichkeit, elektrische und elektronische Geräte zur Entsorgung am Ende ihrer Lebensdauer zurückzugeben, damit sie fachgerecht demontiert und die Bauteile recycelt oder nach Möglichkeit wiederverwendet werden können.

Alle Produkte von Bronkhorst[®], die unter die EEAG-Richtlinie fallen, sind mit einem Symbol gekennzeichnet, das aus einer durchgestrichenen Abfalltonne besteht (in der Regel auf dem Typenschild). Wenn Sie Bronkhorst[®]-Geräte mit diesem Symbol entsorgen möchten, geben Sie sie einfach gemäß den Demontage- und Rückgabeanweisungen zurück, damit Bronkhorst[®] diese Geräte fachgerecht demontieren, recyceln und/oder (sofern möglich) wiederverwenden kann. Dazu müssen Sie im Begleitschreiben einfach angeben, dass Sie das Produkt zur Entsorgung zurückgeben. In der EU ist die Rückgabe von Produkten zur Entsorgung natürlich kostenfrei (mit Ausnahme der Versandgebühren).

In Ländern außerhalb der EU können für die Entsorgung elektrischer und elektronischer Geräte lokale oder nationale Richtlinien und/oder andere Vorschriften gelten. Wenden Sie sich gegebenenfalls an die lokalen oder nationalen Behörden, um mehr darüber zu erfahren, wie Sie in Ihrer Region elektrische und elektronische Geräte entsorgen können.